F.M. Faulstich

Conceptual Problems

Exercise 1 Given matrices A and B,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$$

Compute A + B and AB. Find the transpose of the following matrix:

$$C = \begin{bmatrix} 5 & -2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

Solve the following system of equations:

$$x + 2y = 5$$
$$3x - y = 2$$

Exercise 2 Let $A \in \mathbb{C}^{m \times n}$ with columns a_i , and $B \in \mathbb{C}^{p \times n}$ with columns b_i

$$A = [a_1, a_2, \dots, a_n], \qquad B = [b_1, b_2, \dots, b_n],$$

Show that

$$AB^* = a_1b_1^* + a_2b_2^* + \dots a_nb_n^*$$

Exercise 3 Let $A \in \mathbb{K}^{m \times n}$. Show that range(A) is a subspace of \mathbb{K}^m .

Exercise 4 Prove that for α being the angle enclosed by $x, y \in \mathbb{C}^m$, the relation

$$\cos(\alpha) = \frac{\operatorname{Re}(\langle x, y \rangle)}{\|x\| \|y\|} \tag{1}$$

holds.

Exercise 5 Let $X = \{x_1, ..., x_n\} \in \mathbb{K}^m$ be a set of non-zero $n \in \mathbb{N}$ orthogonal vectors. Then X is orthogonal if and only if

$$X^{*}X = \begin{bmatrix} \alpha_{1} & 0 & \cdots & 0 \\ 0 & \alpha_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \alpha_{n} \end{bmatrix}$$
(2)

where $X = [x_1|...|x_n].$

Exercise 6 Let B be a 4×4 matrix to which we apply the following operations:

- 1. double column 1,
- 2. halve row 3,

- 3. add row 3 to row 1,
- 4. interchange columns 1 and 4,
- 5. subtract row 2 from each of the other rows,
- 6. replace column 4 by column 3,
- 7. delete column 1 (so that the column dimension is reduced by 1).
- (a) Write the result as a product of eight matrices
- (b) Write this as a product ABC of three matrices.

Exercise 7 The Pythagorean theorem asserts that for a set of n orthogonal vectors $\{x_i\}_{i=1}^n$,

$$\left\|\sum_{i=1}^{n} x_i\right\|^2 = \sum_{i=1}^{n} \|x_i\|^2$$

(a) Prove this in the case n = 2 by an explicit computation of $||x_1 + x_2||^2$.

(b) Show that this computation also establishes the general case, by induction.

Exercise 8 Let $\mathcal{H} = \{A \in \mathbb{C}^{m \times m} \mid A^* = A\}$ denote the set of $m \times m$ Hermitian matrices, and we equip \mathcal{H} with the "vector addition" (denoted \oplus)

$$\oplus : \mathcal{H} \times \mathcal{H} \to \mathcal{H} ; \ (A, B) \mapsto [A \oplus B]_{i,j} = A_{i,j} + B_{i,j}$$

and "scalar multiplication" (denoted \odot)

$$\odot : \mathbb{K} \times \mathcal{H} \to \mathcal{H} ; \ (\lambda, A) \mapsto [\lambda \odot A]_{i,j} = \lambda \cdot A_{i,j}$$

- (a) Prove that $(\mathcal{H}, \oplus, \odot)$ is an \mathbb{R} vector space
- [Make sure that all vector space properties are proven.]
- (b) Is $(\mathcal{H}, \oplus, \odot)$ is a \mathbb{C} vector space? Prove your answer.

Programming Assignment

Exercise 9 Generate a Julia environment. Go to https://plutojl.org/ and follow the instructions:

- i) Install Julia.
- ii) Run Julia: In a terminal, start Julia and then run the VERSION command to verify that you indeed installed the most recent version (v1.10.4 on August 30, 2024)
- iii) Install Pluto (import Pkg; Pkg.add("Pluto"))
- iv) Run Pluto (import Pluto; Pluto.run())
- 1. Generate your first markdown cell using $I\!AT_E\!X$:

This is my first cell with equations:	
1+1 eq 1	
<pre>md" This is my first cell with equations:</pre>	
1 + 1 \neq 1 \$`` "	2

2. Generate a cell that prints a string:

