
Chapter 2

Here we learned about norms on spaces of matrices. Two cases are here important:

i) Induced matrix norms

Definition 0.0.1. Let A P Kmˆn and we equip Kn with } ¨ }pnq and Km with } ¨ }pmq.
The induced matrix norm is then

}A}pm,nq “ sup
xPKn

x‰0

}Ax}pmq

}x}pnq

“ sup
xPKn

}x}pnq“1

}Ax}pmq (1)

ii) Matrix norm on the vector space of matrices

Definition 0.0.2. A function } ¨ } : Km Ñ R is called a norm if

1. }x} ě 0 for all x P Km and }x} “ 0 ô x “ 0

2. }x ` y} ď }x} ` }y} for all x,y P Km

3. }αx} “ |α|}x} for all x P Km and for all α P K.

We have also seen central statements like

• Young’s product inequality:

Lemma 0.0.1 (Young’s product inequality). Let a, b P Rě0. Then

ab ď
1

p
ap `

1

q
bq (2)

for 1 ď p, q ď 8 and 1
p ` 1

q “ 1.

Proof. Let a, b P Rě0, and t “ 1
p and 1 ´ t “ 1

q . Then

lnptap ` p1 ´ tqbqq ě
p˚q

t lnpapq ` p1 ´ tq lnpbqq “ lnpaq ` lnpbq “ lnpabq (3)

where we used that ln in concave in p˚q.

• Hölder inequality:

Theorem 0.1 (Hölder inequality). Let x,y P Km. Then

|xx,yy| ď }x}p}y}q, (4)

where 1 ď p, q ď 8 and 1
p ` 1

q “ 1.

• Cauchy–Schwarz inequality:

Corollary 0.1.1 (Cauchy–Schwarz inequality). For p, q “ 2 the Hölder inequality yields

|xx,yy| ď }x}2}y}2. (5)
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• Minkowski inequality

Theorem 0.2 (Minkowski inequality). Let x,y P Km and p ě 1. Then

}x ` y}p ď }x}p ` }y}p (6)

• The standard inner product on matrix spaces:

Definition 0.2.1. Let A,B P Kmˆn. The standard inner product of matrices is defined
as

xA,By “ TrpA˚Bq, (7)

• The Frobenius norm is induced by the standard inner product:

Proposition 0.2.1. The Frobenius norm is induced by the standard inner product of
matrices, i.e., for A P Kmˆn

}A}F “
a

xA,By. (8)

• Unitarily invariant norms:

Theorem 0.3. For any A P Kmˆn and unitary U P Kmˆm, we have

}UA}2 “ }A}2 and }UA}F “ }A}F (9)

Proof. Let A P Kmˆn and U P Kmˆm be unitary. Then

}UAx}2 “
?
x˚A˚U˚UAx “ }Ax}2 ñ }UA}2 “ }A}2 (10)

and
}UA}F “

a

TrppUAq˚UAq “
a

TrpA˚Aq “ }A}F (11)

In the homework assignments you have seen central statements like:

• Hermitian matrices have real-valued eigenvalues.

• Skew hermitian matrices have purely imaginary eigenvalues

• And matrix inequalities: }x}2 ď
?
m}x}8

Proof. Starting from the definition of the 2-norm, we find

}x}2 “

˜

m
ÿ

i“1

|xi|
2

¸1{2

ď

˜

m
ÿ

i“1

max
iPrms

|xi|
2

¸1{2

“
?
m

ˆ

max
iPrms

|xi|
2

˙1{2

“
?
m

ˆ

max
iPrms

|xi|

˙

,

hence
?
m}x}8. The inequality is sharp for x “ p1, 1, . . . , 1qJ, i.e., the vector with all

entries equal to one, since }x}2 “
?
m and }x}8 “ 1.
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Chapter 3

The most central object of this course and large parts of numerical linear algebra; the singular
value decomposition:

Definition 0.3.1. Let A P Kmˆn. We call the factorization

A “ UΣV˚, (12)

where U P Kmˆm and V P Knˆn are unitary, and Σ P Kmˆn is diagonal, singular value
decomposition of A.

Theorem 0.4. Every matrix A P Kmˆn has a singular value decomposition and the singular
values tσiu are uniquely determined. Moreover, if A is square and σi distinct, the left and
right singular vectors tuju and tvju are uniquely determined up to complex signs, i.e., complex
scaling factors of length one.

The proof is long but parts can be asked:

• Then A˚A is positive semi-definite, indeed,

x˚A˚Ax “ pAxq˚pAxq “ }Ax}2 ě 0. (13)

Proposition 0.4.1. Let A P Kmˆn. Then }A}2 “ σmaxpAq, i.e., the largest singular value.

Proof. Let A P Kmˆn, with singular value decomposition A “ UΣV˚ and σ1 being the
largest singular value. Then for }x}2 “ 1

}Ax}22 “ xx,A˚Axy “

n
ÿ

i“1

σ2
i xx,viv

˚
i xy ď σ2

1

n
ÿ

i“1

|v˚
i x|2 “ σ2

1}V˚x}2 ď σ2
1}V˚}2 “ σ2

1 (14)

which is tight for x “ v1.

We learned two key applications:

• Low-rank approximation

• Moore-Penrose inverse:

Definition 0.4.1. Let A P Kmˆn. The matrix A` P Knˆm is called the pseudo inverse
(Moose-Penrose) inverse of A if

i) AA`A “ A iii) pAA`q
˚

“ AA`

ii) A`AA` “ A` iv) pA`Aq
˚

“ A`A

That have different properties:
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Low-rank

Theorem 0.5 (Eckast-Young-Mirsky – spectral norm). Let A P Kmˆm with rankpAq “ r.
For any k with 1 ď k ă r, define

Ak “

k
ÿ

j“1

σjujv
˚
j . (15)

Then
}A ´ Ak}2 “ inf

BPKmˆm

rankpBqďk

}A ´ B}2 “ σk`1 (16)

Proof. First note that
}A ´ Ak}2 “ σk`1. (17)

It remains to show that Ak is the infimum. To that end, assume the exist Bk “ XY˚ where
X,Y have k-columns and that

}A ´ Bk}2 ă }A ´ Ak}2 “ σk`1. (18)

However, since
rankpYq “ k ă k ` 1 “ rankprv1|...|vk`1sq (19)

there exists a linear combination of right singular vectors of

w “ c1v1 ` ... ` ck`1vk`1 (20)

with
Y˚w “ 0. (21)

W.l.o.g. we assume w is normalized, otherwise we normalize w. Then,

}A ´ Bk}
2
2 ě }pA ´ Bkqw}

2
2 “ }Aw}22 “ c21σ

2
1 ` ... ` c2k`1σ

2
k`1 ě σ2

k`1 (22)

Theorem 0.6 (Courant-Fisher min-max – singular values). For A P Kmˆn, we have

σk “ max
V ĂKn

dimpV q“k

min
}v}“1
vPV

}Av}2 (23)

and
σk`1 “ min

V ĂKn

dimpV q“n´k

max
}v}“1
vPV

}Av}2. (24)

Theorem 0.7 (Weyl’s inequality). Let A,B P Kmˆn and denote its singular values by σipAq

and σipBq, respectively. We then have

σi`j´1pA ` Bq ď σipAq ` σjpBq. (25)

Theorem 0.8 (Eckert-Young-Mirsky for Frobenins norm). Let A P Kmˆm with rankpAq “ r.
For any k with 1 ď k ă r, define

Ak “

k
ÿ

j“1

σjujv
˚
j . (26)

Then
}A ´ Ak}F “ inf

BPKmˆm

rankpBqďk

}A ´ B}F “

b

σ2
k`1 ` ... ` σ2

r . (27)
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Moore Penrose inverse

Proposition 0.8.1. Let A P Kmˆn with m ď n and A` its Moore-Penrose inverse. Then

rangepA`q K kerpAq. (28)

Proof. Let A P Kmˆn with A` its Moore-Penrose inverses. Recall that

AA`A “ A and pA`Aq˚ “ A`A. (29)

Moreover let y P rangepA`q, i.e., y “ A`b for some b P Km, and x P kerpAq. Then

xy,xy “ xA`b,xy “ xA`AA`b,xy “ xA`b, pA`Aq˚xy “ xA`b,A`Axy “ 0 (30)

Theorem 0.9. Let A P Kmˆn, the Moore-penrose inverse A` is unique.

Proposition 0.9.1. Let A P Kmˆn with m ą n and rankpAq “ n. Then

A` “ pA˚Aq´1A˚. (31)

Theorem 0.10. If A P Kmˆm attains an inverse, then A´1 “ A`.

Proof. Note that
I “ AA´1 “ AA`AA´1 “ AA` (32)

hence
A´1 “ A´1I “ A´1AA` “ A` (33)

Theorem 0.11. Let A P Kmˆn with A` P Knˆm its pseudo inverse, then
`

A`
˘`

“ A. (34)

Application of MP inverse:

The MP inverse solves the over-determined least squares problem, i.e., minimize

}Ax ´ b}2. (35)

where A P Kmˆn and m ě n – we say “A is tall and skinny”. We have more equations
than variables and consequently zero solutions to the system. We therefore seek x P Kn that
minimizes the above residual, i.e.,

min
xPKn

}Ax ´ b}22. (36)

To that end, we compute the gradient of with respect to x:

B

Bx
}Ax ´ b}22 “ 2A˚pAx ´ bq. (37)

Enforcing first-order optimality yields the normal equation

A˚Ax “ A˚b. (38)

Assuming A˚A is invertible, which holds if A has full rank, we can solve the normal equation,
i.e.,

x “ pA˚Aq´1A˚b “ A`b. (39)
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Chapter 4

This Chapter was all about QR factorization. We learned

Definition 0.11.1. Let P P Kmˆm. We call P a projector if and only if

P2 “ P, (40)

i.e., P is idempotent.

Remark 0.11.1. This definition includes both, orthogonal and non-orthogonal projectors. To
avoid confusion, we call non-orthogonal projectors oblique projectors.

Proposition 0.11.1. If P P Kmˆm is a projector, then I ´ P is also a projector.

Proof. Note that

pI ´ Pq2 “ pI ´ PqpI ´ Pq “ I ´ 2P ` P2 “ I ´ P (41)

which shows the claim.

Definition 0.11.2. Let P P Kmˆm be a projector. We call P an orthogonal projector if and
only if

xPx,yy “ xx,Pyy @x,y P Km, (42)

i.e., P P HmpKq.

Definition 0.11.3. Let A P Kmˆn. We call the factorization

A “ QR (43)

where Q P Kmˆm unitary, and R P Kmˆn is an upper triangular matrix, a QR-factorization
of A.

Remark 0.11.2. We shall now take a closer look at the QR-factorization:
Consider a reduced QR-factorization of A P Kmˆn with n ď m, i.e.,

ra1|...|ans “ rq1|...|qns

»

—

—

—

–

r11 r12 ¨ ¨ ¨ r1n
0 r22 ¨ ¨ ¨ r2n
...

. . .
. . .

...
0 ¨ ¨ ¨ 0 rnn

fi

ffi

ffi

ffi

fl

(44)

hence

a1 “ r11q1 ô q1 “
a1
r11

“
a1

}a1}

a2 “ r12q1 ` r22q2 ô q2 “
a2 ´ r12q1

r22
“

a2 ´ xq1,a2yq1

r22
“

pI ´ q1q
˚
1qa2

}pI ´ q1q˚
1qa2}

a3 “ r13q1 ` r23q2 ` r33q3 ô q3 “
a3 ´ r13q1 ´ r23q2

r33
“

pI ´ q1q
˚
1 ´ q2q

˚
2qa3

}pI ´ q1q˚
1 ´ q2q˚

2qa3}

...

ai “

i
ÿ

j“1

rjiqj ô qi “
ai ´

ři´1
j“1 rjiqj

rii
“

pI ´
ři´1

j“1 qjq
˚
j qai

}pI ´
ři´1

j“1 qjq˚
j qai}

(45)
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This gave rise to three algorithms

• Classical Gram-Schmidt

• Modified Gram-Schmidt

• Iterative Gram-Schmidt

Together with their operational count.

Definition 0.11.4. Let v P Kn be a normal vector defining a hyperplane. The transformation

fH : Kn Ñ Kn : x ÞÑ x ´ 2xx, vyv

is the Householder transformation about the hyperplane defined by the normal vector v P Kn.

Proposition 0.11.2. Let v P Kn be a normal vector defining a hyperplane and fH be the
Householder transformation about the hyperplane defined by the normal vector v P Kn. Then
fH is a linear map and its matrix representation is

Pv “ I ´ 2vv˚

Proposition 0.11.3. Let v P Kn be a normal vector defining a hyperplane and fH be the
Householder transformation about the hyperplane defined by the normal vector v P Kn. The
householder matrix Pv fulfills:

i) Hermitian (Pv “ P˚
v) iv) Pv has eigenvalues ˘1

ii) Unitary (P´1
v “ P˚

v) v) detpPvq “ ´1
iii) Involutory (P´1

v “ Pv)

Proof. First note that
P˚

v “ pI ´ 2vv˚q˚ “ I ´ 2vv˚ “ Pv (46)

which shows i). Next, we consider

P2
v “ pI ´ 2vv˚qpI ´ 2vv˚q “ I ´ 4vv˚ ` 4vv˚ “ I (47)

showing that Pv is involutory. This in turn yields that Pv is unitary, since

P´1
v “ Pv “ P˚

v. (48)

Note that for u K v we have Pvu “ u. Since there are n ´ 1 linearly independent vectors
u P Kn fulfilling u K v, the eigenspace of Pv corresponding to the eigenvalue λ “ 1 is n´1 di-
mensional. Moreover Pvv “ ´v, showing iv). By iv), we know that Pv is diagonalizable with
n´1 eigenvalues λ1 “ 1 and one eigenvalue λ1 “ ´1. Aplying the determinant multiplication
Theorem we have

detpPvq “ det

»

—

—

—

—

–

1 0 ¨ ¨ ¨ 0

0
. . .

. . .
...

...
. . . 1 0

0 . . . 0 ´1

fi

ffi

ffi

ffi

ffi

fl

“ p´1q 1n´1 “ ´1 (49)
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The most important application:

Householder QR

We also did its operational count and argued how to keep it low:

Work with Householder vectors

Definition 0.11.5. Let i, j P rrmss and θ P r0, 2πq. A matrix Gpi, j, θq P Kmˆm defined
through

rGpi, j, θqsl,m “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 , if l “ m, and l ‰ i, j

cospθq , if l “ m “ i, j

sinpθq , if l “ i, and m “ j

´ sinpθq , if l “ j, and m “ i

0 , else.

(50)

is called Givens rotation around θ in the i-j-plane.

Proposition 0.11.4. Givens rotations are orthogonal matrices, i.e., GJ “ G´1.

Remark 0.11.3. Givens rotations indeed rotate in the i-j-plane. Consider

Gpi, j, θqx “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x1
...

xi´1

cxi ´ sxj
xi`1
...

cxj ` sxi
xj`1
...
xm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

fi

ffi

fl

“

„

c ´s
s c

ȷ „

xi
xj

ȷ

(51)

substituting c and s with cospθq and sinpθq, respectively, we see that this corresponds to a
(counter-clockwise) rotation through an angle θ in the i-j-plane.

We designed an algorithm that uses Givens rotations to compute a QR factorization and
discussed the operational count, and how to keep it low:

Track only the Givens angles.
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Chapter 5

The topic of Chapter 5 was accuracy. We distinguish three “error-contributing” parts

i) Conditioning of a problem

ii) Floating point errors

iii) Algorithmic stability

0.1 Conditioning of a problem

Definition 0.11.6. Consider the problem f : X Ñ Y , where pX, } ¨ }Xq and pY, } ¨ }Y q are
normed vector spaces. Let δx be a perturbation on x and define δf “ fpx` δxq ´ fpxq. Then
the absolute condition number is defined as

κ̂f pxq “ lim
δÑ0

sup
}δx}ďδ

}δf}Y

}δx}X
(52)

Proposition 0.11.5. Consider the problem f : X Ñ X, where pX, } ¨ }q is a normed vector
space. Let f be differentiable, then

κ̂f pxq “ }Dfpxq} (53)

Definition 0.11.7. Consider the problem f : X Ñ Y , where pX, } ¨ }Xq and pY, } ¨ }Y q are
normed vector spaces. Let δx be a perturbation on x and define δf “ fpx` δxq ´ fpxq. Then
the relative condition number in x is defined as

κf pxq “ lim
δÑ0

sup
}δx}ďδ

ˆ

}δf}Y

}fpxq}Y

}x}X

}δx}X

˙

“ κ̂f pxq
}x}X

}fpxq}Y
(54)

Proposition 0.11.6. Let A P Kmˆn and consider the problem

f : Kn Ñ Km ; x ÞÑ Ax. (55)

Then

κf pxq “ }A}
}x}

}Ax}
(56)

Corollary 0.11.1. Let A P Kmˆm be non-singular. Then

κf pxq ď }A}}A´1} (57)

Remark 0.11.4. Let A P Kmˆm and considering the problem

f : Kn Ñ Km ; x ÞÑ Ax, (58)

we note that
κf pxq ď sup

xPKm

}x}‰0

κf pxq “ }A}}A´1} (59)

constitutes a worst-case scenario. We therefore denote the condition number of a matrix

κpAq :“ }A}}A´1}. (60)
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Note that if we impose } ¨ }2 on Km we have

}A´1}2 “
1

σm
(61)

and therewith
κpAq “

σ1
σm

(62)

This argument can furthermore be extended to linear problems defined by general matrices
A P Kmˆn, with the adjustment that

κpAq :“ }A}}A`}. (63)

Again imposing the spectral norm, we have

}A`}2 “
1

σn
(64)

and therewith
κpAq “

σ1
σn

(65)

where A was assumed to have full rank and n ă m.

Proposition 0.11.7. Let b P Km and consider the problem

f : GLpmq Ñ Km ; A ÞÑ A´1b. (66)

Then
κf pAq ď κpAq (67)

Proof. For the considered problem we need to quantify

δx “ pA ` δAq´1b ´ A´1b (68)

To that end we consider the inverse problem

b “ pA ` δAqpx ` δxq “ Ax ` Aδx ` δAx ` δAδx “ b ` Aδx ` δAx

ô 0 “ Aδx ` δAx

ô δx “ ´A´1pδAqx

(69)

therefore
}δx} ď }A´1}}δA}}x}. (70)

This yields that

κf pAq “ lim
δÑ0

sup
}δA}ďδ

ˆ

}δx}

}x}

}A}

}δA}

˙

ď
}A´1}}δA}}x}

}x}

}A}

}δA}
“ }A´1}}A} “ κpAq (71)
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Floating point arithmetics

Definition 0.11.8. Consider x P R, and let

i) b P N` be the basis

ii) δ P t˘1u be the sign

iii) e P Z the exponent

We call

x “ δ

˜

8
ÿ

n“1

akb
´k

¸

be (72)

the b-adic representation x, where pakqkPN Ď N with 0 ď ak ă b for all k.

Definition 0.11.9. Let b P N` be the basis and x P R with b-adic representation

x “ δ

˜

8
ÿ

n“1

akb
´k

¸

be. (73)

We call

x̂ “ δ

˜

m
ÿ

n“1

akb
´k

¸

be (74)

the m-floating point representation of x. We call m the mantissa length.

Remark 0.11.5. We are here mostly concerned with a binary and finite representation of real
numbers, i.e., b “ 2 and m ă 8. We here may moreover define the normalized representation
i.e.

x̂ “ δ

˜

1 `

m
ÿ

n“1

akb
´k

¸

be “ flb,m,epxq. (75)

Note that this (potentially) results in a shift in the exponent, yet it allows us a broader range
of numbers to represent as we have an implicit leading one.

Examples:

• IEEE 754 64-bit standard

• IEEE 754 32-bit standard

Definition 0.11.10. We define the machine epsilon as

εps “ inftε P Rą0 | flb,m,ep1 ` εq ą 0u. (76)

Remark 0.11.6. The fundamental axiom of floating point arithmetic states that for all
x, y P F , there exists a ε with |ε| ď εps, s.t.

x ⃝‹ y “ x ‹ yp1 ` εq. (77)

Put differently, every floating point operation is exact up to a relative error of size at most
εps.
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Numerical stability

Definition 0.11.11. Given a problem f : X Ñ Y , where pX, } ¨ }Xq and pY, } ¨ }Y q are normed
vectors spaces, and f̂ is an algorithm that approximates f . We call

}fpxq ´ f̂pxq}Y (78)

the absolute forward error of f̂ in x, and

}fpxq ´ f̂pxq}Y

}fpxq}Y
(79)

the relative forward error. We call the algorithm f̂ (forward) stable if

}fpxq ´ f̂pxq}Y

}fpxq}Y
P Opεpsq. (80)

Definition 0.11.12. Given a problem f : X Ñ Y , where pX, } ¨ }Xq and pY, } ¨ }Y q are normed
vectors spaces, and f̂ is an algorithm that approximates f . We define the backward error of
f̂pxq as

min

#

}δx}

}x}

ˇ

ˇ

ˇ

ˇ

ˇ

f̂pxq “ fpx ` δxq

+

(81)

We say that f̂ is backward stable if and only if for all x P X there exists a x̂ P X with
}x ´ x̂}{}x} P Opεpsq such that

f̂pxq “ fpx̂q (82)

Proposition 0.11.8. f : X Ñ Y , where pX, } ¨ }Xq and pY, } ¨ }Y q are normed vectors spaces,
and let f be well-conditioned. Then, an algorithm that is backward stable is also forward stable
stable.
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Chapter 6

The subject of this chapter was matrix factorizations, in particular, LU and Cholesky.

Definition 0.11.13. Let A P Kmˆm. We call the factorization

A “ LU (83)

where L P Kmˆm is lower triangular and U P Kmˆm is upper triangular an LU -factorization
of A.

Proposition 0.11.9. The matrix L is given by

rLsj,k “ lj,k “
Ajk

Akk
(84)

for j ě k.

Algorithm 1 LU factorization (without pivoting)

Require: A P Kmˆm

Ensure: L P Kmˆm, U P Kmˆm

U Ð A
L Ð I
for k=1 to m-1 do

for j=k+1 to m do
ljk Ð urj, ks{urk, ks

urj, k : ms Ð urj, k : ms ´ ljk urk, k : ms

end for
end for

Algorithm 2 LU factorization with partial pivoting

Require: A P Kmˆm

Ensure: L P Kmˆm, U P Kmˆm and P P Kmˆm

U Ð A
L Ð I
P Ð I
for k=1 to m-1 do

Select i ě k s.t. |U ri, ks| ě |U rj, ks| for all j ě k
Urk, k : ms Ø Uri, k : ms (swap rows)
Lrk, 1 : k ´ 1s Ø Lri, 1 : k ´ 1s (swap rows)
Prk, 1 : ms Ø Pri, 1 : ms (swap rows)
for j=k+1 to m do

Lrj, ks Ð Urj : ks{Urk, ks

Urj, k : ms Ð Urj, k : ms ´ Lrj, ksUrk, k : ms

end for
end for
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Definition 0.11.14. Let A P HmpKq with 0 ă A . We call the factorization

A “ LL˚ (85)

where L P Kmˆm is lower triangular a Cholesky factorization of A.

Proposition 0.11.10. Let A P HmpKq with 0 ă A, and X P Kmˆn with m ě n be full rank.
Then

0 ă X˚AX (86)

is hermitian.

Proof. We first note that
pX˚AXq˚ “ X˚A˚X “ X˚AX. (87)

Moreover, since X is full rank, we know that Xx ‰ 0 for all x ‰ 0. Hence,

x˚pX˚AXqx “ pXxq˚ApXxq ą 0 (88)

since 0 ă A.

Corollary 0.11.2. Let A P HmpKq with 0 ă A, then any principal submatrix is hermitian
and positive definite.

Proposition 0.11.11. Let A P HmpKq. Then 0 ă A if and only if all eigenvalues are
positive.

Lemma 0.11.1. Let A P HmpKq with 0 ă A, i.e.,

A “

„

a1,1 w˚

w K

ȷ

(89)

with a1,1 ą 0. Then, the Schur complement

S “ K ´
1

a1,1
ww˚ (90)

is positive definite.

Proof. Since a1,1 ą 0 the Schur complement is well-define, and

S˚ “

ˆ

K ´
1

a1,1
ww˚

˙˚

“ K˚ ´
1

a1,1
ww˚ “ K ´

1

a1,1
ww˚ (91)

Consider y P Km´1 with y ‰ 0 and define x “ ´ 1
a1,1

w˚y P K. Then

0 ă

„

x
y

ȷ˚

A

„

x
y

ȷ

“

„

x
y

ȷ˚ „

a1,1x ` w˚y
xw ` Ky

ȷ

“

„

x
y

ȷ˚ „

0
Sy

ȷ

“ y˚Sy (92)

Hence, 0 ă S.

Theorem 0.12. Every hermitian and positive definite matrix has a unique Cholesky factor-
ization.
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Algorithm 3 Cholesky factorization (without pivoting, näıve)

Require: A P Kmˆm

Ensure: R P Kmˆm upper triangular s.t. A “ R˚R
for k=1 to m-1 do

Ark ` 1 : m, k ` 1 : ms Ð Ark ` 1 : m, k ` 1 : ms ´ 1
Ark,ks

Ark ` 1 : m, ksArk ` 1 : m, ks˚

Ark, k : ms Ð Ark, k : ms{
a

Ark, ks

end for
Arm,ms Ð Arm,ms{

a

Arm,ms

Algorithm 4 pivoted Cholesky factorization

Require: A P HmpRq and 0 ď A; ε ą 0
Ensure: Low-rank approximation Ak “

řk
i“1 ℓiℓ

J
i s.t. }A ´ Ak}1 ď ε

k Ð 1
d Ð diagpAq

δ Ð }d}1

π “ p1, 2, ...,mq

while δ ą ε do
i Ð argmaxtdrπjs | j “ k, k ` 1, ...,mu

πk Ø πi (swap entries in the vector)
ℓk,πk

Ð
a

drπks

for j “ k ` 1 to m do
ℓk,πj

Ð Arπk, πjs ´
řk´1

p“1 ℓp,πk
ℓp,πj{ℓk,πk

drπjs Ð drπjs ´ ℓ2k,πj

end for
δ Ð

řm
j“k`1 drπjs

k Ð k ` 1
end while

Definition 0.12.1. Let M P Kmˆn and

α “ pα1, ..., αkq Ď rrmss and αc “ rrmsszα (93)

and
β “ pβ1, ..., βℓq Ď rrnss and βc “ rrnsszβ. (94)

We denote
Mrγ, δs (95)

the pγ, δq-block in M.
The Schur complement of Mrα,βs in M is

M{Mrα,βs “ Mrαc,βcs ´ Mrαc,βs pMrα,βsq
: Mrα,βcs. (96)

Proposition 0.12.1. Let M be a square matrix partitioned as

M “

ˆ

A B
C D

˙

. (97)

Let A be nonsingular, then

detpM{Aq “ detpMq{detpAq. (98)
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Chapter 7

This chapter covers eigenvalue problems and basic algorithms to numerically approximate
their solutions.

Definition 0.12.2. Let A P Kmˆm. We call the pair pλ,vq P KˆKm with v ‰ 0 an eigenpair
if and only if

Av “ λv (99)

We call λ the eigenvalue and v a to λ corresponding eigenvector. We call the set of all
eigenvalues of A, the spectrum of A denoted by ΛpAq.

Definition 0.12.3. Let A P Kmˆm. We call the decomposition

A “ XΛX´1 (100)

with Λ P Kmˆm diagonal and X P Kmˆm non-singular an eigenceomposition of A.

Definition 0.12.4. Let A P Kmˆm, and let λ P K be an eigenvalue of A. We define

Eλ “ tv P Km | Av “ λvu (101)

as the eigenspace corresponding to λ. We call the dimension of Eλ the geometric multiplicity
of λ.

Definition 0.12.5. Let A P Kmˆm. We call

pApzq “ detpzI ´ Aq (102)

the characteristic polynomial of A.

Theorem 0.13. The scalar λ P K is an eigenvalue of A if and only if

pApλq “ 0. (103)

Definition 0.13.1. Let X P Kmˆm be non-singular, then we call X´1AX the similarity
transformed of A under X. We call two matrices A,B P Kmˆm similar if and only if there
exists a non-singular matrix X P Kmˆm such that

A “ X´1BX (104)

Theorem 0.14. Let A P Kmˆm and X P Kmˆm be non-singular. Then A and X´1AX
have the same characteristic polynomial, eigenvalues with the same algebraic and geometric
multiplicity.

Proof. We first note that

pX´1AXpzq “ detpzI´X´1AXq “ detpX´1qdetpzI´AqdetpXq “ detpzI´Aq “ pApzq. (105)

Hence, A and X´1AX have the same characteristic polynomial, therewith the same eigenval-
ues at the same algebraic multiplicity. Next, we note that if Eλ is an eigenspace of A, then
X´1Eλ is the corresponding eigenspace of X´1AX. Since X is non-singular

dimpEλq “ dimpX´1Eλq (106)
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Theorem 0.15. Let A P Kmˆm. The algebraic multiplicity of an eigenvalue λ P K is at least
as great as its geometric multiplicity.

Proof. Let dimpEλq “ n. We then form a matrix V̂ “ rv1|...|vns whose columns are an
orthonormal basis of Eλ and orthonormally extend it to V P Kmˆm. This yields

B “ V˚AV “

„

λIn C
0 D

ȷ

(107)

and therewith

detpzIm ´ Bq “ detpzIn ´ λInqdetpzIm´n ´ λDq “ pz ´ λqndetpzIm´n ´ λDq (108)

Definition 0.15.1. We call an eigenvalue whose algebraic multiplicity supersedes its geo-
metric multiplicity defective. A matrix that has one or more defective eigenvalues is called a
defective matrix.

Theorem 0.16. A matrix A P Kmˆm is non-defective if and only if it has an eigendecompo-
sition.

Proof. First, assume A “ XΛX´1. Since Λ is diagonal it is non-defective. Therefore A is
non-defective by Theorem 0.14.
Second, we assume that A is non-defective. This in turn means that A has m linearly
independent eigenvectors v1, ...,vm– note that eigenvectors to different eigenvalues are linearly
independent. Defining X “ rv1|...|vms yields

AX “ XΛ ô A “ XΛX´1 (109)

Definition 0.16.1. Let A P Kmˆm. We call A unitarily diagonalizable if and only if

A “ QΛQ˚ (110)

where Q P Kmˆm is unitary and Λ P Kmˆm is diagonal.

Definition 0.16.2. Let A P Kmˆm. We say that A is normal if and only if

A˚A “ AA˚. (111)

Definition 0.16.3. Let A P Kmˆm. We call the factorization

A “ QTQ˚ (112)

where Q P Kmˆm is unitary and T is upper triangular, a Schur factorization of A.

Theorem 0.17. Every matrix A P Cmˆm has a Schur factorization

Proof. We prove this by induction.

m “ 1: The claim follows directly since

a “ 1 ¨ a ¨ 1. (113)
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Induction hypothesis: Every matrix A P Cmˆm has a Schur factorization.

m Ñ m ` 1: Let A P Cpm`1qˆpm`1q and pλ,vq be an eigenpair and let }v} “ 1. We then
extend v unitarily to a basis which yields U “ rv|u2|...|ums P Cmˆm unitary. This yields

U˚AU “

„

λ B
0 C

ȷ

(114)

By induction hypothesis, there exists a Schur factorization of CCmˆm, i.e.,

C “ V˚TV˚. (115)

defining

Q “ U

„

1 0
0 V

ȷ

(116)

yields

Q˚AQ “

„

λ BV
0 T

ȷ

(117)

Remark 0.17.1. Above, we have seen three eigenvalue-revealing factorizations:

1. A “ XλX´1 holds for non-defective matrices.

2. A “ QλQ˚ holds for normal matrices.

3. A “ QTQ˚ holds for any matrix.

Numerical approaches

Generally, build upon a two-phase procedure:

i) Bring the matrix close to an eigenvalue revealing factorization,i.e.,
upper Hessenberg form

ii) Apply various methods – depending on the problem – to compute the eigenvalue reveal-
ing factorization.

Definition 0.17.1. Let A P HmpRq, x P Rm we call

rpxq “
xJAx

xJx
(118)

Theorem 0.18. The pair prpxq,xq is an eigenpair of A P HmpRq if and only if x is a
stationary point of rp¨q.

Proof. We compute the gradient

B

Bxj
rpxq “

2pAxqj

xJx
´

pxJAxq2xj
pxJxq2

“
2

xJx
pAx ´ rpxqxqj . (119)

Hence, if prpxq,xq is an eigenpair then ∇rpxq “ 0 and conversely, ∇rpxq “ 0 implies that

Ax ´ rpxqx “ 0 ô Ax “ rpxqx (120)
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Algorithm 5 Power method

Require: A P HmpRq

Ensure: pλ,vq largest eigenpair
vp0q Ð v some vector with }v} “ 1
for k “ 1, 2, ... do

w Ð Avpk´1q

vpkq Ð w
}w}

λpkq Ð pvpkqqJAvpkq

end for

Theorem 0.19. Suppose |λ1| ą |λ2| ě |λ3| ě ... ě |λm| ą 0 and qJ
1 v

p0q ‰ 0. Then

}vpkq ´ p˘qq1} P O

˜

ˇ

ˇ

ˇ

ˇ

λ2

λ1

ˇ

ˇ

ˇ

ˇ

k
¸

and |λpkq ´ λ1| P O

˜

ˇ

ˇ

ˇ

ˇ

λ2

λ1

ˇ

ˇ

ˇ

ˇ

2k
¸

(121)

Algorithm 6 Inverse Power method

Require: A P HmpRq, µ
Ensure: eigenpair pλk,vq where pλk ´ µq´1 ą pλi ´ µq´1 for all i ‰ k

vp0q Ð v some vector with }v} “ 1
for k “ 1, 2, ... do

Solve pA ´ µIqw “ vpk´1q for w
vpkq Ð w

}w}

λpkq Ð pvpkqqJAvpkq

end for

Theorem 0.20. Let A P HmpRq, and k P rrmss and j P rrmss be such that

pλk ´ µq´1 ą pλj ´ µq´1 ą pλi ´ µq´1 (122)

for all i ‰ k, j, and let qJ
k v

p0q ‰ 0. Then the iterates of the inverse power method satifsy

}vpℓq ´ p˘qqk} P O

˜

ˇ

ˇ

ˇ

ˇ

µ ´ λk

µ ´ λj

ˇ

ˇ

ˇ

ˇ

ℓ
¸

and |λpℓq ´ λk| P O

˜

ˇ

ˇ

ˇ

ˇ

µ ´ λk

µ ´ λj

ˇ

ˇ

ˇ

ˇ

2ℓ
¸

(123)

Algorithm 7 Rayleigh quotient iteration

Require: A P HmpRq, µ
Ensure: eigenpair pλk,vq where pλk ´ µq´1 ą pλi ´ µq´1 for all i ‰ k

vp0q Ð v some vector with }v} “ 1
λp0q Ð µ
for k “ 1, 2, ... do

Solve pA ´ λpk´1qIqw “ vpk´1q for w
vpkq Ð w

}w}

λpkq Ð pvpkqqJAvpkq

end for
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Theorem 0.21. The Rayleigh quotient iteration converges to an eigenpair for almost all start-
ing vectors – meaning for all except a measure zero set. When it converges, the convergence
is locally cubic, i.e.,

}vpℓ`1q ´ p˘qqk} P O
´

}vpℓq ´ p˘qqk}3
¯

and |λpℓq ´ λk| P O
´

|λpℓq ´ λk|3
¯

(124)

Algorithm 8 Practical QR algorithm

Require: A P HmpRq

Ensure:
pQp0qqJAp0qQp0q Ð A where Ap0q is upper Hessenberg matrix
for k “ 1, 2, ... do

µpkq Ð Ak´1
m,m Rayleigh shift

QpkqRpkq “ Apk´1q ´ µpkqI
Apkq “ RpkqQpkq ` µpkqI

If |A
pkq

j,j`1| ă ε deflate the matrix

Apkq “

„

A1 0
0 A2

ȷ

and apply QR algorithm to A1,A2.
end for

We have seen two shifts:

i) Rayleigh shift

ii) Wilkinson shift

0.2 Other algorithms

‚ Jacobi method

‚ Bisection method

Proposition 0.21.1. Let A be tridiagonal with non-zero off-diagonal elements. Then the
eigenvalues of each principle submatrix Ak of size k ˆ k are distinct

λ
pkq

1 ă λ
pkq

2 ă ... ă λ
pkq

k (125)

and the eigenvalues are strictly interlaced, i.e.,

λ
pk`1q

j ă λ
pkq

j ă λ
pk`1q

j`1 (126)

Sturm sequence:

1 Ñ detpAp1qq Ñ detpAp2qq Ñ ... Ñ detpApmqq. (127)
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Chapter 8

This chapter was about the implementation of SVD computing algorithms.

1. Bidiagonalize A “ UBV˚

- Golub–Kahan (GK)

- Lawson-Hanson-Chan (LHC)

2. Compute tridiagonalization of B

- diagonalize with bisection

Consider the matrix

»

—

—

—

—

—

—

–

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

A

U˚
1 ¨

ÝÑ

»

—

—

—

—

—

—

–

˚ ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

U˚
1A

¨V1
ÝÑ

»

—

—

—

—

—

—

–

˚ ˚ 0 0
0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

U˚
1AV1

Ñ ... Ñ

»

—

—

—

—

—

—

–

˚ ˚ 0 0
0 ˚ ˚ 0
0 0 ˚ ˚

0 0 0 ˚

0 0 0 0
0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

U˚
4U

˚
3U

˚
2U

˚
1AV1V2

(128)

Golub-Kahan:

Op4mn2 ´
4

3
n3q (129)

Lawson-Hanson-Chan:
Op2mn2 ` 2n3q (130)

Since the matrix is in bidiagonal form, i.e.,

B “

»

—

—

—

—

–

a1 b1 0

a2
. . .
. . . bn´1

0 an

fi

ffi

ffi

ffi

ffi

fl

(131)

a first and näıve approach would be to compute

BJB “

»

—

—

—

—

–

a21 b1a1

b1a1 b21 ` a22
. . .

. . .
. . . bn´1an´1

bn´1an´1 b2n´1 ` a2n

fi

ffi

ffi

ffi

ffi

fl

(132)

However, at its core, this is performing the product AJA which squares the condition
number. An alternative approach is to similarity transform the surrogate matrix

„

0 B
BJ 0

ȷ

(133)
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by the permutation

P :

»

—

—

—

—

—

—

—

—

—

–

1
2
3
4
...

2n ´ 1
2n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ÞÑ

»

—

—

—

—

—

—

—

—

—

–

n ` 1
1

n ` 2
2
...

n ` n
n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(134)

which yields

S “ P

„

0 B
BJ 0

ȷ

PJ “

»

—

—

—

—

—

—

—

—

—

–

0 a1
a1 0 b1

b1 0 a2
. . .

. . .
. . .

an´2 0 bn´1

bn´1 0 an
an 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(135)

We may then compute the eigenvalues of S which correspond to the singular values of ˘σpBq.
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Chapter 9

We here focused on Kyrlov subspace methods, in particular the CG method.
Depending on the problem different names arise

We derive and investigate the CG algorithm. To that end, consider the quadratic test function:
Let 0 ă A P HnpRq and b,x P Rn

ϕpxq “
1

2
xJAx ´ xJb

The gradient of ϕ is given by
∇ϕpxq “ Ax ´ b

Hence, at the critical point x˚ we have

∇ϕpx˚q “ 0 ô Ax˚ “ b

This critical point is unique!

i) Note that
∇2ϕpxq “ A ą 0

ñ x˚ is a minimum

ii) ∇2ϕpxq is constant ñ ϕ is convex.

Numerically, we can find the minimum using a linesearch method, i.e., an iterative opti-
mization method. We start with an initial guess x0

Update as
xk`1 “ xk ` αkpk

where pk is the search direction and αk is the step length Remember

∇ϕpxq “ Ax ´ b

points towards largest increase of ϕ in x.
ñ Search direction should be pk “ ´∇ϕpxkq “ rpxkq

What about the step length?
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Idea: Walk until we no longer descend!

0
!

“ Bαk
ϕpxk`1q ñ αk “

rJ
k rk

rJ
kArk

We say a set of vectors tp1, ...,pku are conjugate w.r.t. the SPD matrix A iff

pJ
i Apj “ 0 @i ‰ j

Claim: n A-conjugate vectors form a basis of Rn. Then

x˚ “

n
ÿ

i“1

cipi ñ Ax˚ “

n
ÿ

i“1

ciApi

hence

pJ
k b “

n´1
ÿ

i“0

cip
J
kApi “ ckp

J
kApk ñ ck “

pJ
k b

pJ
kApk

If we have sequence of A-conjugate vecorts we can solve for x˚

Zeroth Iteration:

‚ We start with x0 “ 0 P Rn

‚ Compute the residual
r0 “ b ´ Ax0

‚ Compute the search direction

p0 “ ´∇ϕpx0q “ r0

‚ Compute the step length

α0 “
pJ
0 r0

pJ
0 Ap0

‚ Update the iterate
x1 “ x0 ` α0p0

kth iteration:

‚ Compute the residual
rk “ b ´ Axk “ ´∇ϕpxkq
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‚ Make the gradient conjugate to the previous tp0, ...,pk´1u

pk “ rk ´

k´1
ÿ

i“0

pJ
i Ark

pJ
i Api

pi

‚ Compute the step length

αk “
pJ
k rk

pJ
kApk

‚ Update the iterate
xk`1 “ xk ` αkpk

Why is this a Krylov subspace method?

‚ Claim: xk P Kk “ spanpb,Ab, ...,Ak´1bq

‚ Claim: rk K Kk

‚ Theorem:
xk P Kk is the unique point that minimizes }ek}A with ek “ x˚´xk and }ek}A ď }ek´1}A

and eℓ “ 0 for some ℓ ě n.
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