Chapter 2
Here we learned about norms on spaces of matrices. Two cases are here important:

i) Induced matrix norms

Definition 0.0.1. Let A € K™*" and we equip K" with | - |,y and K™ with | - |-

The induced matrixz norm is then

| Ax]
|A] oy = sup ) = sup A ()
xeK™ HXH(n) xeK™
x#0 x| () =1

ii) Matrix norm on the vector space of matrices
Definition 0.0.2. A function | - | : K™ — R is called a norm if

1. |x| =0 for allx e K™ and |x| =0 < x=0
2. |x+yl < x|+ lyl for all x,y e K™

3. |ax| = |a||x| for all x e K™ and for all a € K.

We have also seen central statements like

e Young’s product inequality:
Lemma 0.0.1 (Young’s product inequality). Let a,b € R>g. Then

1 1
ab < —aP + —b?
b q

forlép,qéooand%—}-%:l.

Proof. Let a,be Rsp, and t = % and 1 —t = %. Then

In(ta? + (1 —t)b?) = tln(a?) + (1 —t) In(b?) = In(a) + In(b) = In(abd)
(%)
where we used that In in concave in ().

e Holder inequality:

Theorem 0.1 (Hélder inequality). Let x,y € K"™. Then

Gyl < Xy g,

wherel<p,q<ooand%+%:l.

e Cauchy—Schwarz inequality:

(1)

Corollary 0.1.1 (Cauchy—Schwarz inequality). For p,q = 2 the Hélder inequality yields

Gyl < [x[2]y2-

()



e Minkowski inequality

Theorem 0.2 (Minkowski inequality). Let x,y € K" and p > 1. Then

Ix +ylp < lIxlp +lylp (6)

e The standard inner product on matrix spaces:

Definition 0.2.1. Let A,B € K"™*"™. The standard inner product of matrices is defined
as
(A,B) = Tr(A"B), (7)

e The Frobenius norm is induced by the standard inner product:

Proposition 0.2.1. The Frobenius norm is induced by the standard inner product of
matrices, i.e., for A e Km*"
IA[r = /(A B). (8)

e Unitarily invariant norms:
Theorem 0.3. For any A € K™*" and unitary U € K™*™  we have

[UA[2 = |Af2 and  [UAjr = [|Afr (9)

Proof. Let A € K™*™ and U € K"™*" be unitary. Then

IUAx[2 = vx*A*U*UAx = |Ax[s = |[UA[2 = [All2 (10)

and
|UA|p = v/Tr((UA)*UA) = \/Tr(A*A) = |A|r (11)
O

In the homework assignments you have seen central statements like:

e Hermitian matrices have real-valued eigenvalues.
e Skew hermitian matrices have purely imaginary eigenvalues
e And matrix inequalities: ||z]2 < v/m|z|w

Proof. Starting from the definition of the 2-norm, we find

1/2

m 1/2 m 1/2
o= (S ) < (D) = v (maxted®) = vin (el ).
i=1 i=1 ie[m] i€[m] i[m]

hence v/m|z||,. The inequality is sharp for z = (1,1,...,1)7, i.e., the vector with all
entries equal to one, since ||x||s = /m and |z], = 1. O



Chapter 3

The most central object of this course and large parts of numerical linear algebra; the singular
value decomposition:

Definition 0.3.1. Let A € K™*", We call the factorization
A =UXV*, (12)

where U € K™ gnd V € K™™ are unitary, and ¥ € K™ "™ is diagonal, singular value
decomposition of A.

Theorem 0.4. Every matriz A € K™*" has a singular value decomposition and the singular
values {o;} are uniquely determined. Moreover, if A is square and o; distinct, the left and
right singular vectors {u;} and {v;} are uniquely determined up to complex signs, i.e., complex
scaling factors of length one.

The proof is long but parts can be asked:

e Then A*A is positive semi-definite, indeed,

x*A*Ax = (Ax)*(Ax) = |Ax|2 = 0. (13)

Proposition 0.4.1. Let A € K™*™. Then |Al2 = omax(A), i.e., the largest singular value.
Proof. Let A € K™*", with singular value decomposition A = UXV™* and oy being the
largest singular value. Then for |x[2 =1
n
|Ax[3 = (x, A*Ax) = ) of(x, vivix) < of ) [vix]? = of[V*x[* < of|V¥|? =0  (14)
i=1 i=1
which is tight for x = v. O
We learned two key applications:
e Low-rank approximation
e Moore-Penrose inverse:

Definition 0.4.1. Let A € K™*"™. The matrizx At € K"*™ s called the pseudo inverse
(Moose-Penrose) inverse of A if

i) AATA=A i) (AAT)" = AA*
i) ATAAT =A*t iv) (ATA)"=A*TA

That have different properties:



Low-rank

Theorem 0.5 (Eckast-Young-Mirsky — spectral norm). Let A € K"*™ with rank(A) = r.
For any k with 1 < k <r, define

k
Ap = Z ojU;v; (15)
j=1
Then
1A= Acl = inf |A=Bl> = ok (16)
rank(B)<k
Proof. First note that
|A = Agly = opsn. (17)

It remains to show that Ay is the infimum. To that end, assume the exist By = XY™ where
X.,Y have k-columns and that

IA = Bgy < |[A — Agly = g1 (18)
However, since
rank(Y) = k < k + 1 = rank([vi]...|vi+1]) (19)
there exists a linear combination of right singular vectors of
W =c¢1V] + ... + Cbr1 Vi1 (20)
with
Y*w = 0. (21)
W.l.o.g. we assume w is normalized, otherwise we normalize w. Then,
2 2
|A = Byl; > [(A = Bi)wl; = [Aw[3 = cfof + ... + 110811 = 074 (22)
O

Theorem 0.6 (Courant-Fisher min-max — singular values). For A € K™ we have

or = max min |Avls (23)
VK™ fv]=1
dim(V)=k vev

and
Ok+1 =  min max [Av|s. (24)
dim(V)=n—k ‘\;(LV
Theorem 0.7 (Weyl’s inequality). Let A, B € K"™*™ and denote its singular values by o;(A)
and 0;(B), respectively. We then have
0'7;+j_1(A + B) < O'Z(A) + O'j(B). (25)

Theorem 0.8 (Eckert-Young-Mirsky for Frobenins norm). Let A € K™*™ with rank(A) = r.
For any k with 1 < k < r, define

k
Ak = Z UjU.jVj. (26)
j=1
Then
[A—Agllp = inf ||A—BHF=4/0%H+...~I—03. (27)
BeKmxm

rank(B)<k



Moore Penrose inverse
Proposition 0.8.1. Let A € K™*" with m < n and A its Moore-Penrose inverse. Then
range(A™) L ker(A). (28)
Proof. Let A € K™*" with A* its Moore-Penrose inverses. Recall that
AATA=A and (ATA)*=ATA. (29)
Moreover let y € range(A ™), i.e., y = ATb for some b € K™, and x € ker(A). Then
{y,x) =(A"b,x) =(ATAAb,x) = (A*b,(ATA)*x) = (ATb,ATAx) =0 (30)

Theorem 0.9. Let A € K™*", the Moore-penrose inverse AT is unique.
Proposition 0.9.1. Let A € K"™*" with m > n and rank(A) = n. Then
At = (A*A)TL1A* (31)
Theorem 0.10. If A € K™*™ qttains an inverse, then A~! = A*.
Proof. Note that

I=AA ' =AATAA = AAT (32)

hence
AT=ATT=A"TAAT=A" (33)
O

Theorem 0.11. Let A € K™*" with AT € K"™™ its pseudo inverse, then
(AF)" = A. (34)

Application of MP inverse:

The MP inverse solves the over-determined least squares problem, i.e., minimize
|Ax — b|. (35)

where A € K™*" and m > n — we say “A is tall and skinny”. We have more equations
than variables and consequently zero solutions to the system. We therefore seek x € K™ that
minimizes the above residual, i.e.,

min |Ax — blf3. (36)
xeKn
To that end, we compute the gradient of with respect to x:
0
?HAX — b| = 2A%*(Ax —b). (37)
X
Enforcing first-order optimality yields the normal equation
A*Ax = A*b. (38)

Assuming A* A is invertible, which holds if A has full rank, we can solve the normal equation,
i.e.,

x = (A*A)"'A*b = A"h. (39)



Chapter 4

This Chapter was all about QR factorization. We learned
Definition 0.11.1. Let P € K"™*™, We call P a projector if and only if

P2=P, (40)
i.e., P is idempotent.

Remark 0.11.1. This definition includes both, orthogonal and non-orthogonal projectors. To
avoid confusion, we call non-orthogonal projectors oblique projectors.

Proposition 0.11.1. If P € K™*"™ {s a projector, then I — P is also a projector.
Proof. Note that

I-P?=(1-P)I-P)=1-2P+P2=-1—-P (41)
which shows the claim. O

Definition 0.11.2. Let P € K™*™ be a projector. We call P an orthogonal projector if and

only if
Px,y) =(x,Py) Vx,yeK", (42)

i.e., P e H,,(K).
Definition 0.11.3. Let A € K™*"™, We call the factorization
A =QR (43)

where Q € K"™*™ ynitary, and R € K™*" is an upper triangular matriz, a QR-factorization
of A.

Remark 0.11.2. We shall now take a closer look at the QR-factorization:
Consider a reduced QR-factorization of A € K™*" with n < m, i.e.,

TiL T2 o Tl
0 rag -+ 1,
fulfan] = farloland | . " ()
0 o 0 T
hence
aj aj
al = r1qi < q1=— =5
i ai
ap —ri2q1  az —{qi,a2)q; I—-qiqj)as
ag = T12q1 + 72242 < Q2= B (a 24 = I-q qi)
722 722 (T — Q1Q1)32H
az — 1391 — 2392 I—qiq] — q2q93)as
az = T13d1 + 2392 +733q3 < Q3 = ras = EI — qlq’l" — ng’z“)agH (45)
1 2
o i ra o gl Siciridy (= YT qia)a
L Jr) v . - i—1
o Tii (X — X521 aja)a



This gave rise to three algorithms
e Classical Gram-Schmidt
e Modified Gram-Schmidt
e [terative Gram-Schmidt
Together with their operational count.
Definition 0.11.4. Let v € K™ be a normal vector defining a hyperplane. The transformation
fu:K'"—>K" . z—x—2x,vw
1s the Householder transformation about the hyperplane defined by the normal vector v € K".

Proposition 0.11.2. Let v € K" be a normal vector defining a hyperplane and fy be the
Householder transformation about the hyperplane defined by the normal vector v e K". Then
fiu is a linear map and its matriz representation is

P, =1-2vv"*

Proposition 0.11.3. Let v € K" be a normal vector defining a hyperplane and fy be the
Householder transformation about the hyperplane defined by the normal vector v e K®. The
householder matriz P+ fulfills:

i) Hermitian (Py =P%) 1iv) Py has eigenvalues +1
ii) Unitary (Pyl=P%) v) det(Py)=—

v

iii) Involutory (Py!=Py)
Proof. First note that
P =(I-2vw")*=1-2vv* =P, (46)
which shows i). Next, we consider
P2 = (I—2vv*)(I—2vv*) =T —4vv* + 4vv* =1 (47)

showing that Py is involutory. This in turn yields that Py is unitary, since
P, =P, = P%. (48)

Note that for u L v we have Pyu = u. Since there are n — 1 linearly independent vectors
u € K" fulfilling u L v, the eigenspace of Py, corresponding to the eigenvalue A = 1is n—1 di-
mensional. Moreover Py v = —v, showing iv). By iv), we know that Py is diagonalizable with
n—1 eigenvalues A; = 1 and one eigenvalue A\; = —1. Aplying the determinant multiplication
Theorem we have

1 0 0
0o . n—1
det(Py) = det = (-)1"t=—1 (49)
.10
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The most important application:
Householder QR
We also did its operational count and argued how to keep it low:
Work with Householder vectors

Definition 0.11.5. Let i,j € [m] and 6 € [0,27). A matriz G(i,j,0) € K™*™ defined
through
,if l=m, and [ # 4,5

cos(6
[G(iaja 0)]l,m = 3 Sin(9
—sin(6

0 ,else.

ifl=m=1i,j
Jif l=14, and m =j (50)

,if Il =4, and m =1

1
)
)
)

1s called Givens rotation around 0 in the i-j-plane.
Proposition 0.11.4. Givens rotations are orthogonal matrices, i.e., G' = G~L.
Remark 0.11.3. Givens rotations indeed rotate in the i-j-plane. Consider

I

Gligox—| —{C _S} H (51)

CTj + sx;
Tj+1

Lm

substituting ¢ and s with cos(0) and sin(@), respectively, we see that this corresponds to a
(counter-clockwise) rotation through an angle 0 in the i-j-plane.

We designed an algorithm that uses Givens rotations to compute a QR factorization and
discussed the operational count, and how to keep it low:

Track only the Givens angles.



Chapter 5

The topic of Chapter 5 was accuracy. We distinguish three “error-contributing” parts
i) Conditioning of a problem
ii) Floating point errors

iii) Algorithmic stability

0.1 Conditioning of a problem

Definition 0.11.6. Consider the problem f : X — Y, where (X,| - |x) and (Y,| - |y) are
normed vector spaces. Let dx be a perturbation on x and define 6f = f(x + dx) — f(x). Then
the absolute condition number is defined as

Ry(r) = lim sup |0/

(52)
00 |5 <s 0| x

Proposition 0.11.5. Consider the problem f: X — X, where (X, | -|) is a normed vector
space. Let f be differentiable, then

Rp(x) = |Df ()] (53)

Definition 0.11.7. Consider the problem f : X — Y, where (X,| - |x) and (Y,| - |y) are
normed vector spaces. Let dx be a perturbation on x and define 6 f = f(x + dx) — f(x). Then
the relative condition number in x is defined as

, [0Sy J|x . [EP
Kf(x) = lim sup < = k(x) (54)
P 050 s \ I @)y Tzl )~ T f @)y
Proposition 0.11.6. Let A € K™*" and consider the problem
K" K"; x— Ax. (55)
Then
s(00) = Al (56)
| Ax|
Corollary 0.11.1. Let A € K™*™ be non-singular. Then
rp(x) < [A][ATY (57)
Remark 0.11.4. Let A € K™*™ and considering the problem
K" > K" ; x— Ax, (58)
we note that
rp(%) < sup. rp(x) = [A][ATY (59)
XE
[0

constitutes a worst-case scenario. We therefore denote the condition number of a matriz

r(A) = [A]ATY. (60)



Note that if we impose | - ||2 on K™ we have

_ 1
A g = — (61)
Om
2 (62)

and therewith
K(A) = —
Om

This argument can furthermore be extended to linear problems defined by general matrices

A e K™*™ with the adjustment that
K(A) = |A][AT]. (63)
Again imposing the spectral norm, we have
n 1
|AT 2 = — (64)
On
and therewith -
R(A) = (65)
On

where A was assumed to have full rank and n < m.

Proposition 0.11.7. Let b € K™ and consider the problem
f:GL(m) - K™; A~ A 'b. (66)
Then
ki(A) < k(A)

Proof. For the considered problem we need to quantify
ox =(A+6A)"'b-A"b (68)

To that end we consider the inverse problem
b = (A +0A)(x + 0x) = AXx + Adx + 0Ax + 0Adx = b + Adx + Ax
(69)

= 0= Adx + dAx
. ox = —A"1(5A)x
therefore
lox| < AT [SA]]x]- (70)
This yields that
: Jox|| A IA[6A]x] |A] .
kp(A) = lim sup ( < —JAT|A] = n(A)  (71)
! -0 5a)<s \ x| [dA] x| oA

10



Floating point arithmetics

Definition 0.11.8. Consider x € R, and let
i) be N be the basis
ii) 6 € {+1} be the sign
iii) e € Z the exponent
We call
a0
x=9 (Z akbk> b° (72)
n=1
the b-adic representation x, where (ag)peny S N with 0 < ap < b for all k.

Definition 0.11.9. Let b€ Ny be the basis and x € R with b-adic representation

0
z=20 <Z akb_k> be. (73)
n=1
We call
i=0 (Z akb_k> be (74)
n=1
the m-floating point representation of x. We call m the mantissa length.

Remark 0.11.5. We are here mostly concerned with a binary and finite representation of real
numbers, i.e., b =2 and m < 0. We here may moreover define the normalized representation
1.€.

=46 (1 + ) akb_k> b = flp e (). (75)
n=1

Note that this (potentially) results in a shift in the exponent, yet it allows us a broader range
of numbers to represent as we have an implicit leading one.

Examples:
e IEEE 754 64-bit standard
e IEEE 754 32-bit standard

Definition 0.11.10. We define the machine epsilon as
Eps = inf{e € Ry | ﬂb,m,e(l + 6) > 0} (76)

Remark 0.11.6. The fundamental axiom of floating point arithmetic states that for all
x,y € F, there exists a ¢ with |e| < eps, s.t.

r®y=xxy(l+e). (77)

Put differently, every floating point operation is exact up to a relative error of size at most
eps.

11



Numerical stability

Definition 0.11.11. Given a problem f: X — Y, where (X, |-|x) and (Y, ||y) are normed
vectors spaces, and f is an algorithm that approximates f. We call

|f (@) = f(@)ly (78)

the absolute forward error off mn x, and

|f () = f(@)ly

79
HEIR ()
the relative forward error. We call the algorithm f (forward) stable if
|f(x) = f(@)ly
(@] :
O +0)

Definition 0.11.12. Given a problem f : X — Y, where (X, |- |x) and (Y, |-|y) are normed
vectors spaces, and f is an algorithm that approzimates f. We define the backward error of

f(x) as
min M
x|

We say that f is backward stable if and only if for all x € X there exists a £ € X with
|z — z|/|z| € O(eps) such that

ﬂﬂ=f&+ﬁ% (81)

f(z) = f(2) (82)

Proposition 0.11.8. f: X — Y, where (X, || x) and (Y, | -|y) are normed vectors spaces,
and let f be well-conditioned. Then, an algorithm that is backward stable is also forward stable
stable.

12



Chapter 6

The subject of this chapter was matrix factorizations, in particular, LU and Cholesky.

Definition 0.11.13. Let A € K"™*™. We call the factorization

A=LU

(83)

where L € K™*™ jg lower triangular and U € K™*™ s upper triangular an LU -factorization

of A.
Proposition 0.11.9. The matriz L is given by

A
Ll =1 ,=-"2%
[ ]]Jf g,k Akk

forj = k.

(84)

Algorithm 1 LU factorization (without pivoting)

Require: A e K™*™
Ensure: L e K™*™ U e K™*™
U—A
| PR |
for k=1 to m-1 do
for j=k+1 to m do
Lje < ulj, k1 /ulk, ]
ulj, k:m] —ulj, k:m] — g ulk, k:m]
end for
end for

Algorithm 2 LU factorization with partial pivoting

Kmxm

Require: A €
Ensure: L € K™*™ U e K™*™ and P € K"™*™
U—A
LI
P—1
for k=1 to m-1 do
Select i = k s.t. |U[i, k]| = |U[j, k]| forall j=>k
Ulk,k: m] < Uli,k : m] (swap rows)
L[k,1:k—1] < L[i,1:k—1] (swap rows)
Plk,1:m] & P[i,1:m] (swap rows)
for j=k+1 to m do
L[j, k] < U[j : k]/U[k, k]
Ulj, k:m] < Ulj, k: m] — L[4, k] Ulk, k : m]
end for
end for

13



Definition 0.11.14. Let A € H,,(K) with 0 < A . We call the factorization
A =LL* (85)
where L € K™*™ 4s lower triangular a Cholesky factorization of A.

Proposition 0.11.10. Let A € H,,,(K) with 0 < A, and X € K™*" with m = n be full rank.
Then
0 < X*AX (36)

is hermitian.

Proof. We first note that
(X*AX)* = X*A*X = X*AX. (87)

Moreover, since X is full rank, we know that Xx s 0 for all x # 0. Hence,
x*(X*AX)x = (Xz)*A(Xx) > 0 (88)
since 0 < A. O

Corollary 0.11.2. Let A € H,,(K) with 0 < A, then any principal submatriz is hermitian
and positive definite.

Proposition 0.11.11. Let A € H,,(K). Then 0 < A if and only if all eigenvalues are
positive.

Lemma 0.11.1. Let A € H,,,(K) with 0 < A, i.e.,

_ a1 w*
A= [ " K] (89)
with a1,1 > 0. Then, the Schur complement
1 *
S=K-—ww (90)
ai1

1s positive definite.

Proof. Since aq,1 > 0 the Schur complement is well-define, and

S* = <K - 1ww*>* =K* — iww* =K- iww* (91)
a1 ai,1 ai,1
Consider y € K™~ ! with y # 0 and define z = —alliw*y € K. Then
z]* T z]* a11x + w¥y 21T 0 "
’s [y} AM B [y} [ aw + Ky ] B [y} {SY] Yy 92
Hence, 0 < S. O

Theorem 0.12. Every hermitian and positive definite matriz has a unique Cholesky factor-
1zation.

14



Algorithm 3 Cholesky factorization (without pivoting, naive)

Require: A € Km*™
Ensure: R € K™*™ upper triangular s.t. A = R*R
for k=1 to m-1 do

Alk+1:mk+1:m] <~ Alk+1:m,k+1:m] — zAlk+1:m, k]A[k+1:m, k]*

ATk K]

Alk,k :m] « Alk,k : m]//Alk, k]
end for
A[lm,m] — A[m, m]/+/A[m,m]

Algorithm 4 pivoted Cholesky factorization

Require: A € H,,(R) and 0 < A;e>0
Ensure: Low-rank approximation Ay = Zle 00l st |A - Agli <e
k—1

d — diag(A)
6« [d]x
m=(1,2,....,m)

while § > ¢ do
i — argmax{d[n;] | j = k,k+1,...,m}
T, <> m; (swap entries in the vector)
Uy — ~/d[7k]
for j=k+1tomdo
k—
ek,ﬂj <~ A[ﬂ-kv ﬂ.j] - Zp:i gpﬂrkgpﬂrj /Zk,ﬂ'k
d[m;] < d[m;] - &
end for
0« ZT:IHl d[m;]
k—k+1
end while

Definition 0.12.1. Let M € K™*"™ and

a=(ag,..,o) S [m] and af=[m]\a
and

B=(h1,..,00) € [[n] and B°=[n]\B.

We denote
M[~, 4]

the (v, d)-block in M.
The Schur complement of M[a, 3] in M is

M/M[e, 8] = M[a", 8] - M[a“, 8] (M][e, 8])' M[a, 57].

Proposition 0.12.1. Let M be a square matriz partitioned as
A B
v ()

det(M/A) = det(M)/det(A).

Let A be nonsingular, then

15



Chapter 7

This chapter covers eigenvalue problems and basic algorithms to numerically approximate
their solutions.

Definition 0.12.2. Let A € K™*™. We call the pair (A, v) € Kx K™ with v # 0 an eigenpair
if and only if
Av = )\v (99)

We call A the eigenvalue and v a to \ corresponding eigenvector. We call the set of all
eigenvalues of A, the spectrum of A denoted by A(A).

Definition 0.12.3. Let A € K™*™. We call the decomposition
A =XAX! (100)
with A € K™*™ diagonal and X € K™*™ non-singular an eigenceomposition of A.
Definition 0.12.4. Let A € K™*™ and let A € K be an eigenvalue of A. We define
Ey={veK"| Av = )\v} (101)

as the eigenspace corresponding to A. We call the dimension of Ey the geometric multiplicity
of A.

Definition 0.12.5. Let A € K™*™. We call
pa(z) = det(zI — A) (102)
the characteristic polynomial of A.
Theorem 0.13. The scalar A € K is an eigenvalue of A if and only if
pa(A) = 0. (103)

Definition 0.13.1. Let X € K™*™ be non-singular, then we call X "'AX the similarity
transformed of A under X. We call two matrices A, B € K™*™ similar if and only if there
ezists a non-singular matriz X € K™*™ sych that

A =X"'BX (104)

Theorem 0.14. Let A € K™ and X € K™ ™ be non-singular. Then A and X 'AX
have the same characteristic polynomial, eigenvalues with the same algebraic and geometric
multiplicity.

Proof. We first note that
px-1ax(2) = det(2I-X"TAX) = det(X!)det(21—A)det(X) = det(2I—A) = pa(2). (105)

Hence, A and X~'AX have the same characteristic polynomial, therewith the same eigenval-
ues at the same algebraic multiplicity. Next, we note that if E) is an eigenspace of A, then
X~1E) is the corresponding eigenspace of X 'AX. Since X is non-singular

dim(E,) = dim(X "' E)) (106)

O
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Theorem 0.15. Let A € K™*™., The algebraic multiplicity of an eigenvalue A € K is at least
as great as its geometric multiplicity.

Proof. Let dim(E)) = n. We then form a matrix V = [vi]...|v,] whose columns are an
orthonormal basis of E\ and orthonormally extend it to V € K™*™, This yields

(107)

A, C
_\J* . n
B—VAV—[O D]

and therewith
det(zI,, — B) = det(zI,, — AL,)det(zL,,—, — AD) = (2 — A\)"det(z1,,—p, — AD) (108)
O

Definition 0.15.1. We call an eigenvalue whose algebraic multiplicity supersedes its geo-
metric multiplicity defective. A matrix that has one or more defective eigenvalues is called a
defective matriz.

Theorem 0.16. A matriz A € K™*™ is non-defective if and only if it has an eigendecompo-
sition.

Proof. First, assume A = XAX ™!, Since A is diagonal it is non-defective. Therefore A is
non-defective by Theorem 0.14.

Second, we assume that A is non-defective. This in turn means that A has m linearly
independent eigenvectors v1, ..., v,,— note that eigenvectors to different eigenvalues are linearly
independent. Defining X = [v1]...|v,,] yields

AX = XA < A = XAX! (109)
O
Definition 0.16.1. Let A € K™*™. We call A unitarily diagonalizable if and only if
A = QAQ* (110)
where Q € K™*™ 4s unitary and A € K™*"™ s diagonal.
Definition 0.16.2. Let A € K™*™. We say that A is normal if and only if
A*A = AA*. (111)
Definition 0.16.3. Let A € K™*™. We call the factorization
A =QTQ* (112)
where Q € K"™*™ s unitary and T is upper triangular, a Schur factorization of A.
Theorem 0.17. FEvery matriz A € C™*™ has a Schur factorization

Proof. We prove this by induction.

m = 1: The claim follows directly since

a=1-a-1. (113)
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Induction hypothesis: Every matrix A € C™*™ has a Schur factorization.

m —m+1: Let A e COmtD)X(m+1) and (), v) be an eigenpair and let ||v| = 1. We then
extend v unitarily to a basis which yields U = [v|ug|...|u,,] € C™*™ unitary. This yields

A B
* _
U*AU = {0 C] (114)
By induction hypothesis, there exists a Schur factorization of CC™*™  i.e.,
C = V*TV* (115)
defining
1 0
Q=U {0 V] (116)
yields
A BV
* _
aaq-|y ] (117)
O

Remark 0.17.1. Above, we have seen three eigenvalue-revealing factorizations:
1. A = XAX ! holds for non-defective matrices.
2. A = QAQ* holds for normal matrices.
3. A = QTQ* holds for any matrizx.

Numerical approaches
Generally, build upon a two-phase procedure:

i) Bring the matrix close to an eigenvalue revealing factorization,i.e.,
upper Hessenberg form

ii) Apply various methods — depending on the problem — to compute the eigenvalue reveal-
ing factorization.

Definition 0.17.1. Let A € H,,(R), x € R™ we call

(118)
Theorem 0.18. The pair (r(x),x) is an eigenpair of A € H,,(R) if and only if x is a
stationary point of r(-).

Proof. We compute the gradient

O ey = 2AX); AN 2 ), (119)

xx (xTx)2 xx

ox;j

Hence, if (r(x),x) is an eigenpair then Vr(x) = 0 and conversely, Vr(x) = 0 implies that
Ax —r(x)x =0 < Ax = r(x)x (120)
U

18



Algorithm 5 Power method

Require: A € H,,(R)

Ensure: (), v) largest eigenpair
v(®) — v some vector with |v| = 1
for k =1,2,... do

w — Av(F=D

vik) ot

AE) — (v T Ay (k)
end for

A2

A1

A2

[o® — (H)ar] € O ( A
1

Theorem 0.19. Suppose [Ai| > [Xa| = [A3]| = ... = |Am| > 0 and ¢] v© # 0. Then
Algorithm 6 Inverse Power method

k 2k
) and AR —\je0 ( ) (121)
Require: A € H,,(R), u

Ensure: eigenpair (A, v) where (A — )™t > (\; — )~ for all i # k
v(®) — v some vector with |v| = 1
for k=1,2,... do
Solve (A — uI)w = v(*=1) for w

Theorem 0.20. Let A € H,,(R), and k € [m] and j € [m]| be such that
M=) > Oy =)t > (= p) ! (122)

for alli # k,j, and let qgv(o) # 0. Then the iterates of the inverse power method satifsy

¢ o, 2
) and A0 — )\ le0 OZ — A’f ) (123)
J

v +)qi| € O ‘
I (£)axl (M ¥

Algorithm 7 Rayleigh quotient iteration

Require: A € H,,(R), u
Ensure: eigenpair (A, v) where (A, — )1 > (\; — )~ for all i # k

v(®) — v some vector with |v| =1

A0 L
for k=1,2,... do
Solve (A — A D)w = v*=1) for w
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Theorem 0.21. The Rayleigh quotient iteration converges to an eigenpair for almost all start-
ing vectors — meaning for all except a measure zero set. When it converges, the convergence
1s locally cubic, i.e.,

Hv(€+1) — (Bl €O (HV(@ _ (i)qufi) and |)\(f) — X €O <|)\(5) — )\k|3> (124)

Algorithm 8 Practical QR algorithm
Require: A € H,,(R)
Ensure:
(QNTAOQO — A where A is upper Hessenberg matrix
for k=1,2,... do
k) Af‘f,;% Rayleigh shift
QWRK) = A1) _ (W]
AR = REOQK) 4+ (]

If |A§-?+1| < ¢ deflate the matrix
A(k) _ [Al 0 j|

and apply QR algorithm to Aj,As.
end for

We have seen two shifts:
i) Rayleigh shift
ii) Wilkinson shift

0.2 Other algorithms

e Jacobi method

e Bisection method

Proposition 0.21.1. Let A be tridiagonal with non-zero off-diagonal elements. Then the
eigenvalues of each principle submatriz AF of size k x k are distinct

)\gk) < /\gk) <..< )\,(Ck) (125)
and the eigenvalues are strictly interlaced, i.e.,

(k+1) (k) (k+1)
Aj <A <A (126)

Sturm sequence:

1 — det(AM) - det(A®) - .. — det(AM). (127)
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Chapter 8

This chapter was about the implementation of SVD computing algorithms.

1. Bidiagonalize A = UBV*

- Golub-Kahan (GK)
- Lawson-Hanson-Chan (LHC)

2. Compute tridiagonalization of B

- diagonalize with bisection

Consider the matrix

I
*¥ ¥k X ¥ X ¥

A

* ¥k KX ¥ X ¥

* ¥k KX X ¥ ¥

Golub-Kahan:

u¥.

O OO OO %

Lawson-Hanson-Chan:

*¥ ¥k X ¥ X ¥
* ¥k X X X ¥

U¥A

* Kk KX X ¥ ¥

* ¥ *¥ *x O

* ¥k KX ¥ X ¥

O OO OO %

U¥AV,

O(4mn?* — %n?’)

O(2mn? + 2n®)

Since the matrix is in bidiagonal form, i.e.,

ar by

a2

0

a first and naive approach would be to compute

B'B =

2
ay

braq

brai b% + a%

* ¥ X ¥ ¥ O

* %= 0 0

0 = = 0

0 0 % =

0 0 0 =

0 0 0O

|0 0 0 0]
UUIUIUFAV,V,

bp—1an-1

2 2
bp—1an-1 bnfl + ay,

(128)

(129)

(130)

(131)

(132)

However, at its core, this is performing the product AT A which squares the condition
number. An alternative approach is to similarity transform the surrogate matrix

5 o
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by the permutation

which yields

S:P[BT 0

]Pr:

=W N

2n —1

[0 4+ 1]

n+ 2

n+n

(134)

(135)

We may then compute the eigenvalues of S which correspond to the singular values of +o(B).
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Chapter 9

We here focused on Kyrlov subspace methods, in particular the CG method.
Depending on the problem different names arise

Ar =0b Ax = Mz

A= A" CG Lanczos
GMRES
A# A CGN Arnoldi
BCG et al.

We derive and investigate the CG algorithm. To that end, consider the quadratic test function:
Let 0 < A e H,(R) and b,x € R”

1
P(x) = §XTAX —x'b

The gradient of ¢ is given by
Vo(x) =Ax—b
Hence, at the critical point x, we have
Vo(xs) =0 < Ax,=Db
This critical point is unique!

i) Note that
Vip(x)=A >0

= X, iS a minimum
ii) V2¢(x) is constant = ¢ is convex.

Numerically, we can find the minimum using a linesearch method, i.e., an iterative opti-
mization method. We start with an initial guess xg
Update as

Xg+1 = Xg + QgPg

where py, is the search direction and «y is the step length Remember
Vo(x) =Ax—b

points towards largest increase of ¢ in x.
= Search direction should be py = —Vo(xy) = r(xg)

What about the step length?
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Idea: Walk until we no longer descend!

T

! r, T
0 = 0n, O(Xp11 = =L
g ( +) I‘ZAI‘k

We say a set of vectors {p1, ..., px} are conjugate w.r.t. the SPD matrix A iff
p,Ap; =0 Vi#j

Claim: n A-conjugate vectors form a basis of R™. Then

n n
i=1

=1

hence
n—1 pr
pib = Z ciPLAD; = kP Apr = o= —F
i=0 P APk

If we have sequence of A-conjugate vecorts we can solve for x,
Zeroth Iteration:

e We start with xg = 0€ R"

e Compute the residual
rg = b — AXO

Compute the search direction

Po = —V¢(x0) = 1o

Compute the step length
-
Po To
TA
Po APO

ap =

Update the iterate
X1 = Xp + aoPo

kth iteration:

e Compute the residual
ry =b— Ax; = —Vo(xp)
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Make the gradient conjugate to the previous {po, ..., Px—1}

k-1
Pr = Tk piTArk i
=1, — L ;
i=0 Y1 Apz
Compute the step length
pzrk
= —=
P, Aps

Update the iterate
Xk+1 = Xk + Pk

Why is this a Krylov subspace method?
Claim: x; € Kj, = span(b, Ab, ..., A¥~1b)
Claim: r; L K

Theorem:
xi, € Ky, is the unique point that minimizes ||ex | 4 with e, = xx—x and |ex|a < [ex—1]a
and e; = 0 for some ¢ > n.
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