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Krylov Subspace Methods

e Depending on the problem different names arise

Az =b Ax = Mz

A= A* CG Lanczos
GMRES
A# A CGN Arnoldi
BCG et al.

Today: Conjugate Gradient CG



Quadratic Test function

e Consider the quadratic test function:
Let 0 < A € H,(R) and b,x € R”

1
p(x) = §XTAX —x'b

e The gradient of ¢ is given by
Vo(x) =Ax—b
Hence, at the critical point x, we have

Vo(x.)=0 < Ax,=Db
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Quadratic Test function

e Consider the quadratic test function:
Let 0 < A € H,(R) and b,x € R”

1
p(x) = §XTAX —x'b

e The gradient of ¢ is given by
Vo(x) =Ax—b
Hence, at the critical point x, we have

Vo(x.)=0 < Ax,=Db

e Is this critical point unique? — Yes!
i) Note that
V2p(x)=A >0
= X, 1S a minimum
ii) V2¢(x) is constant! = ¢ is convex.



Line Search Methods

e Line search methods are iterative optimization method
e Idea:
Start with an initial guess xq
Update as
Xg4+1 = X + Pk

where py is the search direction and «y, is the step length



Steepest Descent

e Remember

Vo(x) =Ax—Db

points towards largest increase of ¢ in x.
= Search direction should be py = —V¢(xy) = r(xy)

e What about the step length?



Steepest Descent

e Remember
Vo(x) =Ax—Db
points towards largest increase of ¢ in x.
= Search direction should be py = —V¢(xy) = r(xy)
e What about the step length?
Idea: Walk until we no longer descend!
! I';—I‘k

0= 04 = =
W O(Xkg1) oy, T Ary




Convergence

= “ZigZag” convergence cannot be optimal!

Question: Can we use information from the previous iterations?



A-conjugate direction

e We say a set of vectors {pi, ..., px} are conjugate w.r.t. the SPD
matrix A iff

P/ Ap; =0 Vi# ]

e Claim: n A-conjugate vectors form a basis of R".
e Then

n n

Xy = Z CiPi = AX* = Z CZ'Api

i=1 =1

hence
n—1 pr
T T T k
pyb= E ciPr ApPi = Py APk = ¢ =
pa P, Apk

e If we have sequence of A-conjugate vecorts we can solve for x.



A-conjugate vectors

How do we find the set of A-conjugate vectors?



A-conjugate vectors

Zeroth Iteration:
We start with xg =0 € R™

Compute the residual

I'[):b—AX()

Compute the search direction
Po = —Vo(x0) = 1o
e Compute the step length

pg ro
P¢ Apo

Qg =

Update the iterate
X1 = X0 + aoPo



A-conjugate vectors

kth iteration:

e Compute the residual
re = b — AXk = —V(Z)(Xk)

e Make the gradient conjugate to the previous {po,..., Px—1}

Pr =Tk — pZTArk i
T
e Compute the step length
_ Ptk
= A
P, APk

e Update the iterate
Xk+1 = Xk + O Pk



Computation of the search direction

e Let’s take a closer look at the search direction

k-1 T
p: Arg

“~p/Api

Pr =Tk —

e Better to impose conjugation explicitly:
Pt =Tk — BkPr—1

Then p;_,; Apr = 0 implies

By = pr_1Ary
" kaflApk—l
Note that
rZApkA = - ! rir, and p;grApk = ir;rrk
Ap—1 (€75
Hence

ﬂk _ I‘;I‘k

T
Ty 1Tk—1



Conjugate Gradient Algorithm

Input: A
Output: x approximate solution to Ax, = b

X():O
p():I'O:b—AXO

For k=1...
Ph_iTh-1
Hh-1 = P;ﬁlkpka
Xp = Xgp—1 + Qg—1Pk—1
rey = b — AXk
B . I'zrk
k= _rl-lc——lrk—l

Pk = Tk — BkPr—1



Why is this a Krylov subspace method?



e Claim: x;, € Ky = span(b, Ab, ..., A*~1b)
e Claim: r; L K

e Theorem:
Xk € K is the unique point that minimizes ||ex||4 with e = x. — xi
and ||ex||a < |lex—1||la and e; = 0 for some ¢ > n.



