Krylov Subspace Methods – Linear Systems –

F. M. Faulstich

11/19/2024

Krylov Subspace Methods

• Depending on the problem different names arise

	Ax = b	$Ax = \lambda x$
$A = A^*$	CG	Lanczos
$A \neq A^*$	GMRES CGN BCG et al.	Arnoldi

Today: Conjugate Gradient CG

Quadratic Test function

• Consider the quadratic test function: Let $0 \prec \mathbf{A} \in \mathbb{H}_n(\mathbb{R})$ and $\mathbf{b}, \mathbf{x} \in \mathbb{R}^n$

$$\phi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{x}^{\top} \mathbf{b}$$

• The gradient of ϕ is given by

$$\nabla \phi(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Hence, at the critical point \mathbf{x}_* we have

$$\nabla \phi(\mathbf{x}_*) = 0 \quad \Leftrightarrow \quad \mathbf{A}\mathbf{x}_* = \mathbf{b}$$

Quadratic Test function

• Consider the quadratic test function: Let $0 \prec \mathbf{A} \in \mathbb{H}_n(\mathbb{R})$ and $\mathbf{b}, \mathbf{x} \in \mathbb{R}^n$

$$\phi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{x}^{\top} \mathbf{b}$$

• The gradient of ϕ is given by

$$\nabla \phi(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Hence, at the critical point \mathbf{x}_* we have

$$\nabla \phi(\mathbf{x}_*) = 0 \quad \Leftrightarrow \quad \mathbf{A}\mathbf{x}_* = \mathbf{b}$$

• Is this critical point unique?

Quadratic Test function

• Consider the quadratic test function: Let $0 \prec \mathbf{A} \in \mathbb{H}_n(\mathbb{R})$ and $\mathbf{b}, \mathbf{x} \in \mathbb{R}^n$

$$\phi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{x}^{\top} \mathbf{b}$$

• The gradient of ϕ is given by

$$\nabla \phi(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Hence, at the critical point \mathbf{x}_* we have

$$\nabla \phi(\mathbf{x}_*) = 0 \quad \Leftrightarrow \quad \mathbf{A}\mathbf{x}_* = \mathbf{b}$$

- Is this critical point unique? Yes!
 - i) Note that

$$\nabla^2 \phi(\mathbf{x}) = \mathbf{A} \succ \mathbf{0}$$

 $\Rightarrow \mathbf{x}_*$ is a minimum

ii) $\nabla^2 \phi(\mathbf{x})$ is constant! $\Rightarrow \phi$ is convex.

Line Search Methods

- Line search methods are iterative optimization method
- Idea:

Start with an initial guess \mathbf{x}_0 Update as

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

where \mathbf{p}_k is the search direction and α_k is the step length

Steepest Descent

• Remember

$$\nabla \phi(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

points towards largest increase of ϕ in ${\bf x}$.

- \Rightarrow Search direction should be $\mathbf{p}_k = -\nabla \phi(\mathbf{x}_k) = \mathbf{r}(\mathbf{x}_k)$
- What about the step length?

Steepest Descent

Remember

$$\nabla \phi(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

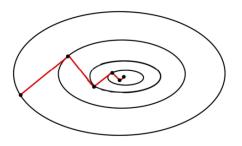
points towards largest increase of ϕ in \mathbf{x} .

- \Rightarrow Search direction should be $\mathbf{p}_k = -\nabla \phi(\mathbf{x}_k) = \mathbf{r}(\mathbf{x}_k)$
- What about the step length?

 Idea: Walk until we no longer descend!

$$0 \stackrel{!}{=} \partial_{\alpha_k} \phi(\mathbf{x}_{k+1}) \quad \Rightarrow \quad \alpha_k = \frac{\mathbf{r}_k^{\top} \mathbf{r}_k}{\mathbf{r}_k^{\top} \mathbf{A} \mathbf{r}_k}$$

Convergence



 \Rightarrow "ZigZag" convergence cannot be optimal!

Question: Can we use information from the previous iterations?

A-conjugate direction

• We say a set of vectors $\{\mathbf{p}_1,...,\mathbf{p}_k\}$ are conjugate w.r.t. the SPD matrix **A** iff

$$\mathbf{p}_i^{\top} \mathbf{A} \mathbf{p}_j = 0 \quad \forall i \neq j$$

- Claim: n **A**-conjugate vectors form a basis of \mathbb{R}^n .
- Then

$$\mathbf{x}_* = \sum_{i=1}^n c_i \mathbf{p}_i \quad \Rightarrow \quad \mathbf{A}\mathbf{x}_* = \sum_{i=1}^n c_i \mathbf{A}\mathbf{p}_i$$

hence

$$\mathbf{p}_k^{\top} \mathbf{b} = \sum_{i=0}^{n-1} c_i \mathbf{p}_k^{\top} \mathbf{A} \mathbf{p}_i = c_k \mathbf{p}_k^{\top} \mathbf{A} \mathbf{p}_k \quad \Rightarrow \quad c_k = \frac{\mathbf{p}_k^{\top} \mathbf{b}}{\mathbf{p}_k^{\top} \mathbf{A} \mathbf{p}_k}$$

• If we have sequence of **A**-conjugate vecorts we can solve for \mathbf{x}_*

A-conjugate vectors

How do we find the set of **A**-conjugate vectors?

A-conjugate vectors

Zeroth Iteration:

- We start with $\mathbf{x}_0 = \mathbf{0} \in \mathbb{R}^n$
- Compute the residual

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$$

• Compute the search direction

$$\mathbf{p}_0 = -\nabla \phi(\mathbf{x}_0) = \mathbf{r}_0$$

• Compute the step length

$$\alpha_0 = \frac{\mathbf{p}_0^{\top} \mathbf{r}_0}{\mathbf{p}_0^{\top} \mathbf{A} \mathbf{p}_0}$$

• Update the iterate

$$\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 \mathbf{p}_0$$

A-conjugate vectors

kth iteration:

• Compute the residual

$$\mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k = -\nabla\phi(\mathbf{x}_k)$$

• Make the gradient conjugate to the previous $\{\mathbf{p}_0,...,\mathbf{p}_{k-1}\}$

$$\mathbf{p}_k = \mathbf{r}_k - \sum_{i=0}^{k-1} rac{\mathbf{p}_i^{ op} \mathbf{A} \mathbf{r}_k}{\mathbf{p}_i^{ op} \mathbf{A} \mathbf{p}_i} \mathbf{p}_i$$

• Compute the step length

$$\alpha_k = \frac{\mathbf{p}_k^{\top} \mathbf{r}_k}{\mathbf{p}_k^{\top} \mathbf{A} \mathbf{p}_k}$$

• Update the iterate

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

Computation of the search direction

• Let's take a closer look at the search direction

$$\mathbf{p}_k = \mathbf{r}_k - \sum_{i=0}^{k-1} rac{\mathbf{p}_i^ op \mathbf{A} \mathbf{r}_k}{\mathbf{p}_i^ op \mathbf{A} \mathbf{p}_i} \mathbf{p}_i$$

• Better to impose conjugation explicitly:

$$\mathbf{p}_k = \mathbf{r}_k - \beta_k \mathbf{p}_{k-1}$$

Then $\mathbf{p}_{k-1}^{\mathsf{T}} \mathbf{A} \mathbf{p}_k = 0$ implies

$$\beta_k = \frac{\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{r}_k}{\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{p}_{k-1}}$$

Note that

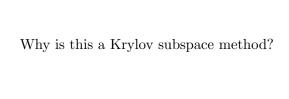
$$\mathbf{r}_k^{\mathsf{T}} \mathbf{A} \mathbf{p}_{k-1} = -\frac{1}{\alpha_{k-1}} \mathbf{r}_k^{\mathsf{T}} \mathbf{r}_k \quad \text{and} \quad \mathbf{p}_k^{\mathsf{T}} \mathbf{A} \mathbf{p}_k = \frac{1}{\alpha_k} \mathbf{r}_k^{\mathsf{T}} \mathbf{r}_k$$

Hence

$$\beta_k = -\frac{\mathbf{r}_k^{\top} \mathbf{r}_k}{\mathbf{r}_{k-1}^{\top} \mathbf{r}_{k-1}}$$

Conjugate Gradient Algorithm

```
Input: A
Output: \mathbf{x} approximate solution to \mathbf{A}\mathbf{x}_* = \mathbf{b}
\mathbf{x}_0 = \mathbf{0}
\mathbf{p}_0 = \mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0
For k=1...
        \alpha_{k-1} = \frac{\mathbf{p}_{k-1}^{\top} \mathbf{r}_{k-1}}{\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{p}_{k-1}}
         \mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_{k-1} \mathbf{p}_{k-1}
         \mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k
        \beta_k = -\frac{\mathbf{r}_k^{\top} \mathbf{r}_k}{\mathbf{r}_k^{\top} \mathbf{r}_k}
         \mathbf{p}_k = \mathbf{r}_k - \beta_k \mathbf{p}_{k-1}
```



- Claim: $\mathbf{x}_k \in \mathcal{K}_k = \text{span}(\mathbf{b}, \mathbf{Ab}, ..., \mathbf{A}^{k-1}\mathbf{b})$
- Claim: $\mathbf{r}_k \perp \mathcal{K}_k$
- Theorem:

 $\mathbf{x}_k \in \mathcal{K}_k$ is the unique point that minimizes $\|\mathbf{e}_k\|_A$ with $\mathbf{e}_k = \mathbf{x}_* - \mathbf{x}_k$ and $\|\mathbf{e}_k\|_A \le \|\mathbf{e}_{k-1}\|_A$ and $\mathbf{e}_\ell = 0$ for some $\ell \ge n$.