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Krylov Subspace Methods

• Depending on the problem different names arise

Today: Conjugate Gradient CG
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Quadratic Test function
• Consider the quadratic test function:

Let 0 ≺ A ∈ Hn(R) and b,x ∈ Rn

ϕ(x) =
1

2
x⊤Ax− x⊤b

• The gradient of ϕ is given by

∇ϕ(x) = Ax− b

Hence, at the critical point x∗ we have

∇ϕ(x∗) = 0 ⇔ Ax∗ = b

• Is this critical point unique? – Yes!
i) Note that

∇2ϕ(x) = A ≻ 0

⇒ x∗ is a minimum
ii) ∇2ϕ(x) is constant! ⇒ ϕ is convex.
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Line Search Methods

• Line search methods are iterative optimization method

• Idea:
Start with an initial guess x0

Update as
xk+1 = xk + αkpk

where pk is the search direction and αk is the step length
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Steepest Descent

• Remember
∇ϕ(x) = Ax− b

points towards largest increase of ϕ in x.
⇒ Search direction should be pk = −∇ϕ(xk) = r(xk)

• What about the step length?

Idea: Walk until we no longer descend!

0
!
= ∂αk

ϕ(xk+1) ⇒ αk =
r⊤k rk

r⊤k Ark
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Convergence

⇒ “ZigZag” convergence cannot be optimal!

Question: Can we use information from the previous iterations?
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A-conjugate direction

• We say a set of vectors {p1, ...,pk} are conjugate w.r.t. the SPD
matrix A iff

p⊤
i Apj = 0 ∀i ̸= j

• Claim: n A-conjugate vectors form a basis of Rn.

• Then

x∗ =

n∑
i=1

cipi ⇒ Ax∗ =

n∑
i=1

ciApi

hence

p⊤
k b =

n−1∑
i=0

cip
⊤
k Api = ckp

⊤
k Apk ⇒ ck =

p⊤
k b

p⊤
k Apk

• If we have sequence of A-conjugate vecorts we can solve for x∗
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A-conjugate vectors

How do we find the set of A-conjugate vectors?
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A-conjugate vectors

Zeroth Iteration:

• We start with x0 = 0 ∈ Rn

• Compute the residual
r0 = b−Ax0

• Compute the search direction

p0 = −∇ϕ(x0) = r0

• Compute the step length

α0 =
p⊤
0 r0

p⊤
0 Ap0

• Update the iterate
x1 = x0 + α0p0
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A-conjugate vectors

kth iteration:

• Compute the residual

rk = b−Axk = −∇ϕ(xk)

• Make the gradient conjugate to the previous {p0, ...,pk−1}

pk = rk −
k−1∑
i=0

p⊤
i Ark

p⊤
i Api

pi

• Compute the step length

αk =
p⊤
k rk

p⊤
k Apk

• Update the iterate
xk+1 = xk + αkpk
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Computation of the search direction

• Let’s take a closer look at the search direction

pk = rk −
k−1∑
i=0

p⊤
i Ark

p⊤
i Api

pi

• Better to impose conjugation explicitly:

pk = rk − βkpk−1

Then p⊤
k−1Apk = 0 implies

βk =
p⊤
k−1Ark

p⊤
k−1Apk−1

Note that

r⊤k Apk−1 = − 1

αk−1
r⊤k rk and p⊤

k Apk =
1

αk
r⊤k rk

Hence

βk = − r⊤k rk
r⊤k−1rk−1
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Conjugate Gradient Algorithm

Input: A
Output: x approximate solution to Ax∗ = b

x0 = 0

p0 = r0 = b−Ax0

For k=1...

αk−1 =
p⊤
k−1rk−1

p⊤
k−1Apk−1

xk = xk−1 + αk−1pk−1

rk = b−Axk

βk = − r⊤k rk
r⊤k−1rk−1

pk = rk − βkpk−1



11/12

Why is this a Krylov subspace method?
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• Claim: xk ∈ Kk = span(b,Ab, ...,Ak−1b)

• Claim: rk ⊥ Kk

• Theorem:
xk ∈ Kk is the unique point that minimizes ∥ek∥A with ek = x∗ − xk

and ∥ek∥A ≤ ∥ek−1∥A and eℓ = 0 for some ℓ ≥ n.


