
F.M. Faulstich Math 6590: Homework assignment 1 Due: Friday Jan. 19, 2024.

Exercise 1 Let A ∈ Hn be PSD and A non-zero. Prove the inequalities

1 ≤ intdim(A) ≤ rank(A). (1)

Show that the upper bound is saturated if A is an orthogonal projector.

Exercise 2 Let M be a square matrix partitioned as

M =

(
A B
C D

)
. (2)

Let A be nonsingular, prove that

det(M/A) = det(M)/det(A). (3)

Exercise 3 Prove that the spectral norm is unitarily invariant, i.e., let A ∈ Cm×n, then

‖WAS‖ = ‖A‖

for all unitary matrices W ∈ Cm×m and S ∈ Cn×n.

Exercise 4 In this programming assignment, you will implement and test your own random-
ized SVD:

1. Write a MATLAB program that performs the randomized range sketch. Your routine
should take a matrix A and a parameter ` as input and return the orthonormal matrix
Q` s.t.

A ≈ Q`Q
∗
`A

2. Write a MATLAB program that performs the randomized range finder discussed in class.

3. The randomized range sketch as well as the randomized range finder can be used as a
sketch. Wrap both routines as “Stage A” (you may use an input flag to steer if the
range finder or sketch is used), and write an extension using “Stage B” discussed in
class. This extension should take A and ε as input and return an approximate SVD
based on the two-stage low-rank approximation procedure outlined in class. You may
use the MATLAB internal routine svd for this stage.

4. It is now time to test your routines and convince me that this algorithm is worth using
(at least for some matrices). As a benchmark use the MATLAB internal routine svd

(a) Investigate matrices with exponentially decaying singular values. To that end, cre-
ate a matrix Σ with decreasing values along its diagonal and reverse the SVD to
obtain A. Then, run your implementation of the randomized SVD over a range of
sampling parameter values ` ∈ {1, 2, . . . 150}. For each ` computed two values:

• σ`+1 (This is the minimum approximation error by EYM)

• e` = ‖(1−Q`Q
∗
` )A‖ (This is the actual error )

To know what we are aiming at, compare with Fig. 7.2 in [?]. Then also plot
the singular values you picked for Σ and compare them with the computed singular
values with your code and MATLAB’s SVD.

1



(b) Change Σ above to have rapidly decaying singular values as well as slowly decaying
singular values. What do you observe? Again, try to scientifically convince me that
your code is useful for some systems, but be also honest in presenting the code’s
weaknesses.

(c) Perform timings of your codes. Remember that you should make at least five
(rather more!) runs per input and take the average time to obtain a smooth and
representable timing plot. Perform timing experiments and scale the considered
matrices up. Try to push your code to outperform the MATLAB built-in SVD in
terms of speed.

(d) Experiment with MATLAB profiler to find computational bottlenecks in your code.

References

[1] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217–288, 2011.

2


