F.M. Faulstich Math 6590: Homework assignment 2 Due: Friday Feb. 16, 2024.

Exercise 1 Suppose you have a fair coin (i.e., the probability of heads (H) is the same as tails (T), which is 0.5). The experiment is to flip the coin n times, and we denote the random variable representing the number of heads by X. Note that this is a Bernoulli process, i.e., the individual flips are modeled by a Bernoulli random variable that takes the value 1 (i.e. heads) with probability 0.5, and the value 0 (i.e. tails) with probability 0.5, and

$$X = \sum_{i=1}^{n} X_i.$$

You are interested in estimating the probability that the number of heads is significantly higher or lower than the expected number, i.e., estimating the tail of the distribution.

- a) What is the expected number of heads in n flips, i.e., $\mathbb{E}(X)$?
- b) Chernoff bound:
 - i) Use the Chernoff bound to estimate the probability that the number of heads is at least $(1 + \delta)\mathbb{E}[X]$.
 - ii) Calculate this probability for n = 100 and $\delta = 0.1$. Interpret your results.

Exercise 2 Consider

$$g(u) = \gamma u + \ln\left(1 + \gamma - \gamma e^u\right)$$

with $\gamma = \frac{a}{b-a}$. Prove that

$$g''(u) \le \frac{1}{4} \qquad \text{for } u > 0$$

Exercise 3

- a) Implement the Girard-Hutchinson estimator
- b) Experiment with the Girard-Hutchinson estimator. Choose ω_i to be:
 - i) Gaussian: The entries of of each ω_i are i.i.d. $\mathcal{N}(0,1)$
 - ii) Rademacher: The entries of of each ω_i are i.i.d. Rademacher
 - iii) Sphere: The entries of of each ω_i are i.i.d. uniformly sampled from a sphere of radius \sqrt{n} , i.e., $\omega_i \sim \mathcal{U}\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^\top \mathbf{x} = n\}$ where \mathcal{U} is the uniform distribution.

Generate $\mathbf{A} \in \mathbb{R}^{1000 \times 1000}$ with eigenvalues uniformly distributed between 0.9 and 1.1 with a (Haar orthogonal) random matrix of eigenvectors. Investigate the variance $\mathbb{V}(\boldsymbol{\omega}^* \mathbf{A} \boldsymbol{\omega})$ for the cases i)–iii), what do you observe, and which random variable would you use in computations?

Note: You may find it useful to normalize the Variance by $Tr(\mathbf{A})$

- c) Implement the remaining trace estimators introduced in class:
 - *ii)* The HUTCH++ estimator
 - *iii)* The XTRACE Estimator

- *iv)* The XNYSTRACE Estimator
- d) Fix the random seed and compute that Girard-Hutchinson, XTRACE and XNYSTRACE are indeed exchangeable, whereas HUTCH++ is not.
- e) Reproduce the Figure 1 in [1]

References

[1] Ethan N Epperly, Joel A Tropp, and Robert J Webber. Xtrace: Making the most of every sample in stochastic trace estimation. *SIAM Journal on Matrix Analysis and Applications*, 45(1):1–23, 2024.