F.M. Faulstich Math 6590: Homework assignment 3 Due: Monday Mar. 18, 2024.

Exercise 1 Let $\mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{d}}$ be fixed and $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be the set of all mappings $\mathbb{N}_{n_{1}} \times \ldots \times$ $\mathbb{N}_{n_{d}} \rightarrow \mathbb{R}$. Define an addition \oplus on $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ as

$$
(\mathbf{X} \oplus \mathbf{Y})\left[i_{1}, \ldots, i_{d}\right]=X\left[i_{1}, \ldots, i_{d}\right]+Y\left[i_{1}, \ldots, i_{d}\right]
$$

for all $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. The tensor $\mathbf{0} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ is defined elementwise via $\mathbf{0}\left[i_{1}, \ldots, i_{d}\right]=0$ for all i_{1}, \ldots, i_{d}. Define a scalar multiplication \otimes, such that for every scalar $\alpha \in \mathbb{R}$ and $\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$

$$
(\alpha \otimes \mathbf{X})\left[i_{1}, \ldots, i_{d}\right]=\alpha \cdot\left(X\left[i_{1}, \ldots, i_{d}\right]\right)
$$

Show that $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ forms a real vector space.
Consider the third order tensor

$$
\mathbf{A}=\left[\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right]\right] \in \mathbb{R}^{4 \times 3 \times 2}
$$

Exercise 2 Perform the following tensor-vector contractions:
(a) $\mathbf{A} *_{3,1}\binom{1}{0}$
(b) $\mathbf{A} *_{3,1}\binom{1}{1}$
(c) $\mathbf{A} *_{3,1}\binom{1}{2}$

Exercise 3 Perform the following tensor contractions:

$$
(a) \mathbf{A} *_{(2,3),(2,1)}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad(b) \mathbf{A} *_{(1,3),(2,1)}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right)
$$

Exercise 4 In this exercise, you will numerically scrutinize the different sketching techniques introduced in the lectures.
a) Implement the Gaussian Embeddings, and provide your code.
b) Implement the SRTT, and provide your code.
c) Implement the SSE, and provide your code.
d) Perform timing comparison of

- Construction: The time required to generate the sketching matrix S.
- Vector apply. The time to apply the sketch to a single vector
- Matrix apply. The time to apply the sketch to an $n \times 200$ matrix
for $n=10^{6}, d=400$, for SRTT with DCT and SSE with $\zeta=8$.
Report your results in a table similar to the one we have seen in Lecture 8 [a 3×3 table].
e) Apply sketch-and-solve to a least-squares problem of size 10,000 by 100 with condition number 10^{8} and residual norm 10^{-4}. Report the residual norm and the forward error for sketch-and-solve and compare them with results from a direct solver in MATLAB (i.e. "backslash" operator).
f) Implement the iterative sketching, and provide your code.
g) Perform a comparison study, providing at least a plot as shown in class plotting the forward error of the direct, sketch-and-solve, and iterative sketching against each other.

