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General info

• Course Website: https://fabianfaulstich.github.io/MATH6950 2024/

• Homework assignments:

1. Submission through Gradescope.
2. Gradescope will close on the due date at 11:59 p.m.

No late submissions!
3. Everyone get one joker
4. zero-tolerance policy regarding cheating

• Lectures:

1. hybrid slides and blackboard lecturing
2. the slide part will be made available online
3. Code presented and used in class will be made available online

• Programming assignments:

1. P.A.s will carry substantial points in each homework
2. To gain full credit you have to show exploration and clear reasoning

https://fabianfaulstich.github.io/MATH6950_2024/


3/1

Planned course outlook

1. Review of numerical linear algebra and probability theory

2. Low-rank approximations and randomness
...
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What to expect

• The course is centered primarily on computational aspects

• Aimed at equipping you with a robust set of computational skills

• Proofs will be included (mostly) at a high level

• The course aims to impart an understanding of the key ideas behind
proofs rather than delving into exhaustive, fully worked-out proofs
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numerical linear algebra

• solving dense and sparse linear systems

• orthogonalization, least square & (Tikhonov) regularization

• determination of eigenvalues & eigenvectors, invariant subspaces

• singular value decomposition (SVD)
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Numerical linear algebra

What is the problem?

⇒ Large scaling problems!

Example:
Given an m× n matrix A where both m and n are large, the singular
value decomposition will require memory and time which is superlinear in
m and n

O(4mn2 − 4

3
n3) (GK)

Randomized algorithms bring this down to m and k, where k is the rank

O(2kn2 + 2n3) (LHC)
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Randomized algorithms

1. Monte Carlo (M.C.) algorithms (∼1940)
· Last resort methods
· M.C. converges slowly
· Hesitation: Two runs should produce the same number

2. Randomized algorithms in numerical linear algebra (∼1980)
· Power method, random initialization (Dixon 1983)
· M. C. methods for trace estimation (Girard 1989 & Hutchinson
1990)
· Randomized transformations can avoid pivoting steps in Gaussian
elimination (Parker 1995)

3. Practical randomized algorithms for low-rank matrix approximation
and least-squares problems (mid-2000s)
· First computational evidence that randomized algorithms
outperform classical NLA algorithms for particular classes of
problems
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Review:
Classical Numerical Linear Algebra

• L. N. Trefethen and D. Bau III, Numerical linear algebra, Vol. 50, SIAM

• G. Stewart, Matrix Algorithms Volume 1: Basic Decompositions, SIAM

• G. W. Stewart, Matrix algorithms volume 2: eigensystems, Vol. 2, SIAM

• G. H. Golub and C. F. Van Loan, Matrix computations

• R. A. Horn and C. R. Johnson, Matrix analysis

• R. Bhatia, Matrix analysis, Vol. 169 of Graduate Texts in Mathematics
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Basics – Notation I
• Algebraic field: C, R, F
• Scalars: a, b, ... or α, β, ...

• Vectors are elements of Fn, n ∈ N: a,b, ... or α,β, ...

• Special vectors 0,1, δi ∈ Fn:

0 =


0
0
...
0

 1 =


1
1
...
1

 δi =



0
...
0
1
0
...
0


• Vector element:

(a)i = a(i) ith coordinate of a

• Colon notation: (a)1:i = a(1 : i)
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Basics – Notation II

• A matrix is an element of Fm×n, m,n ∈ N:
A,B, ... or Λ,∆, ...

• Matrix element:

(A)ij = A(ij) (i, j)th coordinate of A

• Special matrices 0, I ∈ Fm×n:

0 =

0 · · · 0
...

. . .
...

0 · · · 0

 I =


1 0 · · · 0

0
. . .

. . .
...

...
. . . 1 0

0 · · · 0 1


• Colon notation: (A)i: ≡ ith row and (A):j jth column of A
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Basics – Notation III

• ∗ is the conjugate transpose

• Hn = Hn(F) = {A ∈ Fn×n : A = A∗}
• † is the Moor–Penrose (pseudo)inverse:

A† is the MP inverse of A iff

(i) AA†A = A (iii) (AA†)∗ = AA†

(ii) A†AA† = A† (iv) (A†A)∗ = A†A

If A has full column rank, then A† = (A∗A)−1A∗

If A attains an inverse then

A† = A−1
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Eigenvalues and singular values

• PSD= {A ∈ Hn : x>Ax ≥ 0 for x 6= 0}
• PD= {A ∈ Hn : x>Ax > 0 for x 6= 0}
• 4 denotes the semidefinte order on Hn, i.e.

A 4 B⇔ 0 4 B−A

• ≺ denotes the definte order on Hn, i.e.

A ≺ B⇔ 0 ≺ B−A

• Eigenvalues of A ∈ Hn: λ1 ≥ λ2 ≥ ...
• Singular values of A ∈ Fm×n: σ1 ≥ σ2 ≥ ...
• Let f : R→ R. We extend f to spectral function f : Hn → Hn

f(A) :=

n∑
i=1

f(λi)uiu
∗
i where A =

n∑
i=1

λiuiu
∗
i
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Inner products and geometry I

• Equip Fn with standard scalar product and associated `2-norm.
Let a,b ∈ Fn then

〈a,b〉 := a · b = a∗b =

n∑
i=1

(a)∗i (b)i

and
‖a‖2 := 〈a,a〉

• Unit sphere in Fn: Sn−1 = Sn−1(F)
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Inner products and geometry II

• The trace of A ∈ Fn×n:

Tr(A) = trace(A) =

n∑
i=1

(A)ii

Nonlinear functions bind before the trace.

• Equip Fm×n with the standard trace inner product and Frobenius
norm:
Let A,B ∈ Fm×n then

〈A,B〉 := Tr(A∗B)

and
‖A‖2F = 〈A,A〉

• U ∈ Fm×n is orthonormal iff U∗U = In.
U is unitary (F = C) or orthogonal (F = R) if m = n.
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Matrix norms I

• Let ‖ · ‖α be a norm on Fn and ‖ · ‖β be a norm on Fm. Then

‖ · ‖α,β : Fm×n → R; A 7→ sup
x∈Fn
‖x‖α 6=0

‖Ax‖β
‖x‖α

Induces a norm on Fm×n.

• Alternatively, we may define any function

‖ · ‖ : Fm×n → R

that fulfills:

1. 0 ≤ ‖A‖, ∀A ∈ Fm×n and ‖A‖ = 0⇔ A = 0
2. ‖aA‖ = |a|‖A‖, ∀A ∈ Fm×n, and ∀a ∈ F
3. ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ Fm×n
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Matrix norms II

Several matrix norms will be used. Let A ∈ Fm×n

• The unadorned norm ‖ · ‖ is the spectral norm

‖A‖ = σ1 = ‖A‖`2

• ‖ · ‖∗ is the nuclear/trace norm

‖A‖∗ =

min(m,n)∑
k=1

σk

• ‖ · ‖F is the Frobenius norm

‖A‖2F =
m∑
i=1

n∑
j=1

|(A)ij |2 =

min(m,n)∑
k=1

σ2k = Tr(A∗A)
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Matrix norms III

• ‖ · ‖p is the Schatten p-norm for p ∈ [1,∞]

‖A‖p =

min(m,n)∑
k=1

σpk

 1
p

• ‖ · ‖K,p is the Ky Fan p-norm for p ≤ min(m,n)

‖A‖K,p =

p∑
k=1

σk

Note:
‖ · ‖∗ = ‖ · ‖K,min(m,n) = ‖ · ‖1

‖ · ‖F = ‖ · ‖2
‖ · ‖ = ‖ · ‖K,1 = ‖ · ‖∞
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Intrinsic Dimension

Let A ∈ Hn be PSD. We define the intrinsic dimension as

intdim(A) :=
Tr(A)

‖A‖

Note that for A non-zero:

1 ≤ intdim(A) ≤ rank(A)

The upper bound is saturated if A is an orthogonal projector i.e.

1. A ∈ Fm×m and A2 = A

2. A is projector and A ∈ Hn

The intrinsic rank can be interpreted as a continuous measure of the rank
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Stable rank

Let B ∈ Fm×n. We define the stable rank as

srank(A) := intdim(B∗B) =
‖B‖2F
‖B‖2
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Schur complement

Let

M =

(
A B
C D

)
∈ Fm×m

with A ∈ Fn×n.
If D is invertible the Schur complement of D in M is

M/D := A−BD−1C

If A is invertible the Schur complement of A in M is

M/A := D−CA−1B

The latter is used for Cholesky factorization (M ∈ Hn and A ∈ F1×1).

What if D of A are singular or not square?
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Generalized Schur complement

Let M ∈ Fm×n and

α = (α1, ..., αk) ⊆ [[m]] and αc = [[m]] \α

and
β = (β1, ..., β`) ⊆ [[n]] and βc = [[n]] \ β.

We denote
M[γ, δ]

the (γ, δ)-block in M.
The Schur complement of M[α,β] in M is

M/M[α,β] = M[αc,βc]−M[αc,β] (M[α,β])†M[α,βc]

F. Zhang, The Schur complement and its applications, Vol. 4 of Numerical Methods

and Algorithms, Springer-Verlag, New York.
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Approximation in the spectral norm

We will mostly establish spectral norm errors.

• Suppose A ∈ Fm×n and Â ∈ Fm×n is an approximation

‖A− Â‖ ≤ ε

then

1. |〈F,A〉 − 〈F, Â〉| ≤ ε‖F‖∗ for every matrix F ∈ Fm×n

2. |σj(A)− σj(Â)| ≤ ε, ∀j

How do spectral norm errors compare with Frobenius norm error
measures?


