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General info

Course Website: https://fabianfaulstich.github.io/MATH6950_2024/
Homework assignments:

1. Submission through Gradescope.

2. Gradescope will close on the due date at 11:59 p.m.
No late submissions!

3. Everyone get one joker

4. zero-tolerance policy regarding cheating

Lectures:

1. hybrid slides and blackboard lecturing
2. the slide part will be made available online
3. Code presented and used in class will be made available online

e Programming assignments:

1. P.A.s will carry substantial points in each homework
2. To gain full credit you have to show exploration and clear reasoning


https://fabianfaulstich.github.io/MATH6950_2024/

Planned course outlook

1. Review of numerical linear algebra and probability theory

2. Low-rank approximations and randomness



What to expect

The course is centered primarily on computational aspects

Aimed at equipping you with a robust set of computational skills

Proofs will be included (mostly) at a high level

The course aims to impart an understanding of the key ideas behind
proofs rather than delving into exhaustive, fully worked-out proofs
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numerical linear algebra

e solving dense and sparse linear systems
e orthogonalization, least square & (Tikhonov) regularization

e determination of eigenvalues & eigenvectors, invariant subspaces

Ax = Ax
n/

Matrix Eigenvalue
Eigenvector

Calcworkshop.com
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numerical linear algebra

solving dense and sparse linear systems

orthogonalization, least square & (Tikhonov) regularization

determination of eigenvalues & eigenvectors, invariant subspaces

singular value decomposition (SVD)
Bl 4
o
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M=UX-V*



Numerical linear algebra

What is the problem?
= Large scaling problems!

Example:

Given an m X n matrix A where both m and n are large, the singular
value decomposition will require memory and time which is superlinear in
m and n

O(4mn? — 3" ) (GK)

Randomized algorithms bring this down to m and k, where & is the rank

O(2kn? + 2n®) (LHC)



Randomized algorithms

1. Monte Carlo (M.C.) algorithms (~1940)
- Last resort methods
- M.C. converges slowly
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Randomized algorithms

1. Monte Carlo (M.C.) algorithms (~1940)
- Last resort methods
- M.C. converges slowly
- Hesitation: Two runs should produce the same number

2. Randomized algorithms in numerical linear algebra (~1980)
- Power method, random initialization (Dixon 1983)
- M. C. methods for trace estimation (Girard 1989 & Hutchinson
1990)
- Randomized transformations can avoid pivoting steps in Gaussian
elimination (Parker 1995)

3. Practical randomized algorithms for low-rank matrix approximation
and least-squares problems (mid-2000s)
- First computational evidence that randomized algorithms
outperform classical NLA algorithms for particular classes of
problems



Review:
Classical Numerical Linear Algebra

L. N. Trefethen and D. Bau III, Numerical linear algebra, Vol. 50, STAM
G. Stewart, Matrix Algorithms Volume 1: Basic Decompositions, STAM
G. W. Stewart, Matrix algorithms volume 2: eigensystems, Vol. 2, STAM
G. H. Golub and C. F. Van Loan, Matrix computations

R. A. Horn and C. R. Johnson, Matrix analysis

R. Bhatia, Matrix analysis, Vol. 169 of Graduate Texts in Mathematics



Basics — Notation I
Algebraic field: C, R, F
Scalars: a, b, ... or o, 3, ...

Vectors are elements of F*, n € N: a,b,... or 0, 3, ...

e Special vectors 0,1,9; € F":
0
0 1
0 1
0=]. 1= ;=11
: 0
0 1 )
0
e Vector element:
(a); = a(i) ith coordinate of a

e Colon notation: (a);; = a(l: 1)



Basics — Notation 11

e A matrix is an element of F"™*" m.,n € N:
AB ..or AJA, ..

Matrix element:

(A)ij = A(ij) (7, 7)th coordinate of A

e Special matrices 0,1 € F™*":;
1 0 0
0 --- 0
L
0 0 1

Colon notation: (A);. = ith row and (A).; jth column of A
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e 1 is the Moor—Penrose (pseudo)inverse:



Basics — Notation 111

e x is the conjugate transpose

o H, =H,(F)={A cF"™" : A=A*}

e 1 is the Moor—Penrose (pseudo)inverse:
AT is the MP inverse of A iff

(i) AATA=A (i1i) (AAT)* = AAT
(1) ATAAT = AT (iv) (ATA)*=ATA



Basics — Notation 111

e x is the conjugate transpose

o H, =H,(F)={A cF"™" : A=A*}

e 1 is the Moor—Penrose (pseudo)inverse:
AT is the MP inverse of A iff

(i) AATA=A (i17) (AAT)* = AAT
(ii) ATAAT = AT (iv) (ATA)*=ATA

If A has full column rank, then AT = (A*A)"TA*
If A attains an inverse then

Af=A"1



Eigenvalues and singular values

e PSD={A cH, : x'Ax >0 for x # 0}
e PD={AcH, : x"Ax >0 for x # 0}

e =< denotes the semidefinte order on H,, i.e.
AxB&<0xB-A

e < denotes the definte order on H,, i.e.
A<B&<0<B-A

e Eigenvalues of A € Hy,: Ay > Ao > ...
e Singular values of A € F"™*": g1 > g9 > ...
e Let f: R — R. We extend f to spectral function f : H,, — H,

f(A) = Z f(Ai)wu;  where A = Z Aiu;uy
i=1

=1



Inner products and geometry I

e Equip F” with standard scalar product and associated ¢?-norm.
Let a,b € F” then

(a,b):=a-b=a"b=> (a)j(b);

i=1

and
la]l* := (a,a)

e Unit sphere in F*: "~ = S"~1(F)



Inner products and geometry II

e The trace of A € F"*":
Tr(A) = trace(A) = Y (A)i

Nonlinear functions bind before the trace.

e Equip F™*™ with the standard trace inner product and Frobenius
norm:
Let A, B € F"™*" then

(A,B) := Tr(A*B)

and
|A]7 = (A, A)

e U ¢ F™*" is orthonormal iff U*U =1,,.
U is unitary (F = C) or orthogonal (F = R) if m = n.



Matrix norms I

e Let || - [[o be a norm on F" and || - ||g be a norm on F™. Then

Ax
| o : F™" - R; A sup I Axll
xcFn™ ||XHOé
lIxla70
Induces a norm on F"*™,

e Alternatively, we may define any function
|- : F™*" - R

that fulfills:
1. 0<||A], YA € F™*" and |A| =0 < A =0
2. |laAl| = |a]||A]|, VA € F™*" and Va € F
3. |[A+B[| <Al +[B], VA,B € F™*"



Matrix norms II

Several matrix norms will be used. Let A € F™*"

e The unadorned norm || - || is the spectral norm

[A]l =01 = [[A]l

e || - ||« is the nuclear/trace norm
min(m,n)
1Al = > o
k=1
e || - || is the Frobenius norm

min(m,n)

AR =23 1yl = Y oi=T(A%A)
k=1

i=1 j=1 =



Matrix norms 111

e || - ||, is the Schatten p-norm for p € [1, o0
min(m,n) P
lAllb =1 > o
k=1
e || ||kp is the Ky Fan p-norm for p < min(m,n)
P
1Ay =D on
k=1
Note:
1 Ml = 11 i mingmymy = 1 - 111
- llE =1 ll2

=10 =1 loo
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Intrinsic Dimension

Let A € H,, be PSD. We define the intrinsic dimension as

Tr(A)
[A]]

intdim(A) :=
Note that for A non-zero:
1 < intdim(A) < rank(A)

The upper bound is saturated if A is an orthogonal projector i.e.
1. A e F™™ and A2 = A
2. A is projector and A € H,

The intrinsic rank can be interpreted as a continuous measure of the rank



Stable rank

Let B € F™*", We define the stable rank as

N IBII%
srank(A) := intdim(B*B) = IBJ2




Schur complement

Let

_ A B mXxXm
M_<C D)GIF

with A € F7nx"™,
If D is invertible the Schur complement of D in M is

M/D:=A -BD'C
If A is invertible the Schur complement of A in M is
M/A:=D-CA'B

The latter is used for Cholesky factorization (M € H,, and A € F'*1).

What if D of A are singular or not square?



Generalized Schur complement
Let M € F™*™ and
a=(a1,..,ap) C[m] and a°=[m]\«

and
B=(f1,....,00) C[n] and B°=][n]\pB.

We denote
My, 9]

the (7, d)-block in M.
The Schur complement of M[e, 8] in M is

M/Mle, 8] = Mla“, 5] — Mle, 8] (Mlex, 8))' Mlex, 5]

F. Zhang, The Schur complement and its applications, Vol. 4 of Numerical Methods
and Algorithms, Springer-Verlag, New York.



Approximation in the spectral norm

We will mostly establish spectral norm errors.

e Suppose A € F™*" and A € F™*" is an approximation
|A—All<e

then
1. |(F,A) — (F,A)| < ¢|F||. for every matrix F € F™*"
2. |oj(A) —0j(A)[ <&, Vi

How do spectral norm errors compare with Frobenius norm error
measures?



