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Why matrix approximation

e Matrix approximations can be used to speed up certain operations

i) Matrix multiplication
ii) Solving linear systems
iii) Computing matrix decompositions

e We have already seen some sort of matrix approximations
i) RSVD
il) Matrix sketching
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e We wish to approximate B with a matrix that has more “structure”
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where B; € F™*"™ are more “strucutre”
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e Let {p; | i =1,...,1} be a (given) probability distribution and

1
X:=—B; (setting 0/0 = 0)

bi

Then X is an unbiased estimator for B:

E(X)=B
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Empirical approximation

The random matrix X has the same structures are B;

A single draw of X rarely gives a good approximation of B

Define the estimator

1

k
X, = ZXZ- where X; ~ X i.i.d.
=1

>

By linearity X, is also an unbiased estimator of B

If k is small we inherited some structure of B;

= How many samples do we need?



Matrix Monte Carlo

Let B € F™*" be a fixed matrix.
Construct a random matrix X € F™*"™ that satisfies

E(X)=B and |X||<R
Define the per-sample second moment:
v(X) = max {|E(XX) |, [[E(X*X)]|}

Form the matrix sampling estimator
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X, = in where X; ~ X i.i.d.
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The matrix Bernstein inequality

Consider a finite sequence {S} of i.i.d. random matrices of size dy X da.

Assume that
E(Sx) =0 and ||Sk| <L Vk

zzZsk
k

Let v(z) be the matrix variance statistic of the sum:

Introduce

v(Z) = max{[|E(ZZ")||, [[E(Z"Z)]|}

Then

Llog(dy + d2)

< \/21] log d1 + dz) 3



Interpretation

How large should & be to ensure that the expected approximation error
lies below a €7



