Matrix approximation by sampling Lecture 12

F. M. Faulstich

22/02/2024

Why matrix approximation

- Matrix approximations can be used to speed up certain operations
i) Matrix multiplication
ii) Solving linear systems
iii) Computing matrix decompositions
- We have already seen some sort of matrix approximations
i) RSVD
ii) Matrix sketching

Empirical approximation

- Let $\mathbf{B} \in \mathbb{F}^{m \times n}$ be the target matrix
- We wish to approximate \mathbf{B} with a matrix that has more "structure"

Empirical approximation

- Let $\mathbf{B} \in \mathbb{F}^{m \times n}$ be the target matrix
- We wish to approximate \mathbf{B} with a matrix that has more "structure"
- Let's consider

$$
\mathbf{B}=\sum_{i=1}^{I} \mathbf{B}_{i}
$$

where $\mathbf{B}_{i} \in \mathbb{F}^{m \times n}$ are more "strucutre"
\rightarrow Sparse
\rightarrow Low-rank

Empirical approximation

- Let $\mathbf{B} \in \mathbb{F}^{m \times n}$ be the target matrix
- We wish to approximate \mathbf{B} with a matrix that has more "structure"
- Let's consider

$$
\mathbf{B}=\sum_{i=1}^{I} \mathbf{B}_{i}
$$

where $\mathbf{B}_{i} \in \mathbb{F}^{m \times n}$ are more "strucutre"
\rightarrow Sparse
\rightarrow Low-rank

- Let $\left\{p_{i} \mid i=1, \ldots, I\right\}$ be a (given) probability distribution and

$$
\mathbf{X}:=\frac{1}{p_{i}} \mathbf{B}_{i} \quad(\text { setting } 0 / 0=0)
$$

Then \mathbf{X} is an unbiased estimator for \mathbf{B} :

$$
\mathbb{E}(\mathbf{X})=\mathbf{B}
$$

Empirical approximation

- The random matrix \mathbf{X} has the same structures are \mathbf{B}_{i}
- A single draw of \mathbf{X} rarely gives a good approximation of \mathbf{B}

Empirical approximation

- The random matrix \mathbf{X} has the same structures are \mathbf{B}_{i}
- A single draw of \mathbf{X} rarely gives a good approximation of \mathbf{B}
- Define the estimator

$$
\overline{\mathbf{X}}_{k}=\frac{1}{k} \sum_{i=1}^{k} \mathbf{X}_{i} \quad \text { where } \mathbf{X}_{i} \sim \mathbf{X} \text { i.i.d. }
$$

Empirical approximation

- The random matrix \mathbf{X} has the same structures are \mathbf{B}_{i}
- A single draw of \mathbf{X} rarely gives a good approximation of \mathbf{B}
- Define the estimator

$$
\overline{\mathbf{X}}_{k}=\frac{1}{k} \sum_{i=1}^{k} \mathbf{X}_{i} \quad \text { where } \mathbf{X}_{i} \sim \mathbf{X} \text { i.i.d. }
$$

By linearity $\overline{\mathbf{X}}_{k}$ is also an unbiased estimator of \mathbf{B}

- If k is small we inherited some structure of \mathbf{B}_{i}
\Rightarrow How many samples do we need?

Matrix Monte Carlo

Let $\mathbf{B} \in \mathbb{F}^{m \times n}$ be a fixed matrix.
Construct a random matrix $\mathbf{X} \in \mathbb{F}^{m \times n}$ that satisfies

$$
\mathbb{E}(\mathbf{X})=\mathbf{B} \quad \text { and } \quad\|\mathbf{X}\| \leq R
$$

Define the per-sample second moment:

$$
v(\mathbf{X}):=\max \left\{\left\|\mathbb{E}\left(\mathbf{X X}^{*}\right)\right\|,\left\|\mathbb{E}\left(\mathbf{X}^{*} \mathbf{X}\right)\right\|\right\}
$$

Form the matrix sampling estimator

$$
\overline{\mathbf{X}}_{k}=\frac{1}{k} \sum_{i=1}^{k} \mathbf{X}_{i} \quad \text { where } \mathbf{X}_{i} \sim \mathbf{X} \text { i.i.d. }
$$

Then

$$
\mathbb{E}\left(\left\|\overline{\mathbf{X}}_{k}-\mathbf{B}\right\|\right) \leq \sqrt{\frac{2 v(\mathbf{X}) \log (m+n)}{k}}+\frac{2 R \log (m+n)}{3 k}
$$

The matrix Bernstein inequality

Consider a finite sequence $\left\{\mathbf{S}_{k}\right\}$ of i.i.d. random matrices of size $d_{1} \times d_{2}$. Assume that

$$
\mathbb{E}\left(\mathbf{S}_{k}\right)=\mathbf{0} \quad \text { and } \quad\left\|\mathbf{S}_{k}\right\| \leq L \forall k
$$

Introduce

$$
\mathbf{Z}=\sum_{k} \mathbf{S}_{k}
$$

Let $v(z)$ be the matrix variance statistic of the sum:

$$
v(\mathbf{Z})=\max \left\{\left\|\mathbb{E}\left(\mathbf{Z} \mathbf{Z}^{*}\right)\right\|,\left\|\mathbb{E}\left(\mathbf{Z}^{*} \mathbf{Z}\right)\right\|\right\}
$$

Then

$$
\mathbb{E}(\mathbf{Z}) \leq \sqrt{2 v(\mathbf{Z}) \log \left(d_{1}+d_{2}\right)}+\frac{L \log \left(d_{1}+d_{2}\right)}{3}
$$

Interpretation

How large should k be to ensure that the expected approximation error lies below a ε ?

