Multi-linear Algebra Lecture 13

F. M. Faulstich

22/02/2024

Idea of tensor products

Consider

$$
\mathbf{v}_{1}=\binom{1}{0} \in \mathbb{R}^{2} \quad \text { and } \quad \mathbf{v}_{2}=\binom{0}{1} \in \mathbb{R}^{2}
$$

Then

$$
\begin{array}{ll}
\mathbf{v}_{1} \otimes \mathbf{v}_{1}=\left(1 \cdot\binom{1}{0}\right. & \left.0 \cdot\binom{1}{0}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),
\end{array} \begin{array}{ll}
\mathbf{v}_{1} \otimes \mathbf{v}_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
\mathbf{v}_{2} \otimes \mathbf{v}_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), & \mathbf{v}_{2} \otimes \mathbf{v}_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

Tensor product space

Observation:
The tensor products

$$
\mathbf{v}_{i} \otimes \mathbf{v}_{j} \quad \text { for } i, j \in\{1,2\}
$$

for a basis of $\mathbb{R}^{2 \times 2}$

Can we formalize this idea?

The algebraic tensor product space

Definition (algebraic tensor product)

Let U, V be Hilbert spaces over the same field \mathbb{F}. For any $\mathbf{u} \in U$ and $\mathbf{v} \in V$, the conjugate bilinear form

$$
\mathbf{u} \otimes \mathbf{v}: U \times V \rightarrow \mathbb{F} ;(\tilde{\mathbf{u}}, \tilde{\mathbf{v}}) \rightarrow\langle\mathbf{u}, \tilde{\mathbf{u}}\rangle_{U} \cdot\langle\mathbf{v}, \tilde{\mathbf{v}}\rangle_{V}
$$

is called the tensor product of \mathbf{u} and \mathbf{v}. Elements that can be constructed like this are called elementary tensors. The linear span (using the canonical addition) of all elementary tensors

$$
U \otimes_{a} V:=\operatorname{span}\{\mathbf{u} \otimes \mathbf{v} \mid \mathbf{u} \in U, \mathbf{v} \in V\}
$$

is called the algebraic tensor product of U and V .

Tensor interpretation

- A tensor can be interpreted as a linear map:

$$
\mathbf{v}=\binom{v_{1}}{v_{2}}
$$

then we may also define \mathbf{v} through

$$
\mathbf{v}(\mathbf{u})=v_{1} u_{1}+v_{2} u_{2}
$$

which is a linear map of \mathbb{F}^{2}.

Inner product structure

Definition (skalar product)
For every $\chi, \tilde{\chi} \in U \otimes_{a} V$, the induced scalar product $\langle\chi, \tilde{\chi}\rangle_{U \otimes V}$ is defined via any finite linear representation

$$
\begin{array}{ll}
\chi=\sum_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} & \mathbf{u}_{i} \in U, \mathbf{v}_{i} \in V \\
\tilde{\chi}=\sum_{j} \mathbf{u}_{j} \otimes \mathbf{v}_{j} & \mathbf{u}_{j} \in U, \mathbf{v}_{j} \in V
\end{array}
$$

as

$$
\langle\chi, \tilde{\chi}\rangle_{U \otimes V}:=\sum_{i, j}\left\langle\mathbf{u}_{i}, \tilde{\mathbf{u}}_{j}\right\rangle_{U} \cdot\left\langle\mathbf{v}_{i}, \tilde{\mathbf{v}}_{j}\right\rangle_{V}
$$

This induced scalar product on $U \otimes_{a} V$ is well defined, i.e. does not depend on the linear representations chosen.

Remark on algebraic tensor product spaces

- In finite dimension, $U \otimes_{a} V$ equipped with the induced scalar product is itself a Hilbert space.
- In general $U \otimes_{a} V$ may not be complete.

Definition (tensor product)
The closure of the algebraic tensor product of U, V, i.e.,

$$
U \otimes V=\overline{U \otimes_{a} V}
$$

with respect to the norm induced by $\langle\cdot, \cdot\rangle_{U \otimes V}$ is called the topological tensor product or simply tensor product.

Properties

- Tensor basis:

If $\left\{\mathbf{u}_{i} \mid 1 \leq i \leq \operatorname{dim}(U)\right\}$ and $\left\{\mathbf{v}_{i} \mid 1 \leq i \leq \operatorname{dim}(V)\right\}$ are orthonormal bases of U and V, respectively, then
$\left\{\mathbf{u}_{i} \otimes \mathbf{v}_{j} \mid 1 \leq i \leq \operatorname{dim}(U), 1 \leq j \leq \operatorname{dim}(V)\right\}$ is an orthonormal basis of $U \otimes V$. Therefore the dimension of $U \otimes V$ is $\operatorname{dim}(V) \cdot \operatorname{dim}(U)$.

- Tensor subspaces:

Let $\tilde{U} \subseteq U$ and $\tilde{V} \subseteq V$ be subspaces of U and V, and \tilde{U}^{\perp} and $\tilde{V} \perp$ be the corresponding orthogonal complements then

$$
U \otimes V=(\tilde{U} \otimes \tilde{V}) \oplus\left(\tilde{U}^{\perp} \otimes \tilde{V}\right) \oplus\left(\tilde{U} \otimes \tilde{V}^{\perp}\right) \oplus\left(\tilde{U}^{\perp} \otimes \tilde{V}^{\perp}\right)
$$

is an orthogonal decomposition of $U \otimes V$. In particular $\tilde{U} \otimes \tilde{V}$ is a subspace of $U \otimes V$.

Multiple tensor products

Going back to

$$
\mathbf{v}=\binom{1}{0} \in \mathbb{R}^{2} \quad \text { and } \quad \mathbf{u}=\binom{0}{1} \in \mathbb{R}^{2}
$$

Multiple tensor products

Going back to

$$
\mathbf{v}=\binom{1}{0} \in \mathbb{R}^{2} \quad \text { and } \quad \mathbf{u}=\binom{0}{1} \in \mathbb{R}^{2}
$$

Then

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v}=\left[v_{1} \mathbf{u} \otimes \mathbf{v}, v_{2} \mathbf{u} \otimes \mathbf{v}\right]=\left[\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right]
$$

Multiple tensor products

Going back to

$$
\mathbf{v}=\binom{1}{0} \in \mathbb{R}^{2} \quad \text { and } \quad \mathbf{u}=\binom{0}{1} \in \mathbb{R}^{2}
$$

Then

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v}=\left[v_{1} \mathbf{u} \otimes \mathbf{v}, v_{2} \mathbf{u} \otimes \mathbf{v}\right]=\left[\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right]
$$

and

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{v}=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}
\end{array}\right]
$$

Multiple tensor products

Going back to

$$
\mathbf{v}=\binom{1}{0} \in \mathbb{R}^{2} \quad \text { and } \quad \mathbf{u}=\binom{0}{1} \in \mathbb{R}^{2}
$$

Then

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v}=\left[v_{1} \mathbf{u} \otimes \mathbf{v}, v_{2} \mathbf{u} \otimes \mathbf{v}\right]=\left[\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right]
$$

and

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{v}=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}
\end{array}\right]
$$

How about

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{v} \otimes \mathbf{u}
$$

Multiple tensor products

Going back to

$$
\mathbf{v}=\binom{1}{0} \in \mathbb{R}^{2} \quad \text { and } \quad \mathbf{u}=\binom{0}{1} \in \mathbb{R}^{2}
$$

Then

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v}=\left[v_{1} \mathbf{u} \otimes \mathbf{v}, v_{2} \mathbf{u} \otimes \mathbf{v}\right]=\left[\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right]
$$

and

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{v}=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} & {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}
\end{array}\right]
$$

How about

$$
\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{v} \otimes \mathbf{u}
$$

We define this elementwise

$$
[\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{v} \otimes \mathbf{v} \otimes \mathbf{u}]_{i, j, k, l, m}=v_{i} u_{j} v_{k} v_{l} u_{m}
$$

Multiple Algebraic Tensor Product

Definition

For any $\mathbf{u}_{1} \in U_{1}, \ldots, \mathbf{u}_{d} \in U_{d}$ the conjugate bilinear form

$$
\begin{aligned}
\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{d}: & U_{1} \times \ldots \times U_{d} \rightarrow \mathbb{F} \\
& \left(\tilde{\mathbf{u}}_{1}, \ldots, \tilde{\mathbf{u}}_{d}\right) \rightarrow\left\langle\mathbf{u}_{1}, \tilde{\mathbf{u}}_{1}\right\rangle_{U_{1}} \cdots\left\langle\mathbf{u}_{d}, \tilde{\mathbf{u}}_{d}\right\rangle_{U_{d}}
\end{aligned}
$$

is called the tensor product of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}$, and elements which can be constructed in this way are called elementary tensors. The linear span (using the canonical addition) of all elementary tensors

$$
U_{1} \otimes \cdot \otimes U_{d}=\operatorname{span}\left\{\mathbf{u}_{1} \otimes \cdots \otimes \mathbf{u}_{d} \mid \mathbf{u}_{i} \in U_{i}\right\}
$$

is called the algebraic tensor product of U_{1}, \ldots, U_{d}. The number d of involved Hilbert spaces is referred to as the order of the tensor space.

The tensor space $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$

- We will mostly concern ourselfs with tensors in $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$
- A tensor is nothing but a map that maps integers to numbers Example:
Let $\mathbb{N}_{k}=\{1, \ldots, k\}$. Then

$$
\mathbf{x}: \mathbb{N}_{k} \rightarrow \mathbb{R} ; i \mapsto \mathbf{x}[i]
$$

describes a vector $\mathbf{x} \in \mathbb{R}^{k}$.

The tensor space $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$

- We will mostly concern ourselfs with tensors in $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$
- A tensor is nothing but a map that maps integers to numbers Example:
Let $\mathbb{N}_{k}=\{1, \ldots, k\}$. Then

$$
\mathbf{x}: \mathbb{N}_{k} \rightarrow \mathbb{R} ; i \mapsto \mathbf{x}[i]
$$

describes a vector $\mathbf{x} \in \mathbb{R}^{k}$. The map

$$
\mathbf{A}: \mathbb{N}_{m} \times \mathbb{N}_{n} \rightarrow \mathbb{R} ;(i, j) \mapsto \mathbf{A}[i, j]
$$

describes a matrix.

The tensor space $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$

- The map

$$
\chi: \mathbb{N}_{n_{1}} \times \mathbb{N}_{n_{d}} ;\left(i_{1}, \ldots, i_{d}\right) \mapsto \chi\left[i_{1}, \ldots, i_{d}\right]
$$

defines the tensor $\boldsymbol{\chi} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. The number n_{i} is the i th dimension of $\chi, \mathbb{N}_{n_{1}} \times \mathbb{N}_{n_{d}}$ its index set and d its order.

- Tensors are a generalization of vectors and matrices:

Tensors of order one are vectors
Tensors of order two are matrices

- Linear algebra is a special case of multi-linear algebra

The tensor space $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$

Proposition

Each space $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ can be expressed as the d-fold tensor product of order one tensors

$$
\mathbb{R}^{n_{1} \times \ldots \times n_{d}}=\mathbb{R}^{n_{1}} \otimes \cdots \otimes \mathbb{R}^{n_{d}}=\bigotimes_{i-1}^{d} \mathbb{R}^{n_{i}}
$$

In particular, every tensor $\boldsymbol{\chi} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ can be expressed as a linear combination elementary tensors, i.e.,

$$
\chi=\sum_{j} \mathbf{x}_{1, j} \otimes \cdots \otimes \mathbf{x}_{d, j} \quad \mathbf{x}_{i, j} \in \mathbb{R}^{n_{i}}
$$

Frobenius scalar product

Let the real coordinate spaces $\mathbb{R}^{n_{i}}$ be equipped with the canonical scalar product.

Frobenius scalar product

Let the real coordinate spaces $\mathbb{R}^{n_{i}}$ be equipped with the canonical scalar product. Then, the unique induced scalar product on $R^{n_{1} \times \ldots \times n_{d}}$, i.e. the scalar product for which

$$
\left\langle\bigotimes_{i=1}^{d} \mathbf{x}_{i}, \bigotimes_{i=1}^{d} \mathbf{y}_{i}\right\rangle=\prod_{i=1}^{d}\left\langle\mathbf{x}_{i}, \mathbf{y}_{i}\right\rangle
$$

holds for all elementary tensors with $\mathbf{x}_{i}, \mathbf{y}_{i} \in \mathbb{R}^{n_{i}}$, is the Frobenius scalar product defined as

$$
\begin{aligned}
\langle\cdot, \cdot\rangle_{F} & : \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \times \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \rightarrow \mathbb{R} \\
\quad(\mathbf{X}, \mathbf{Y}) & \mapsto \sum_{i_{1}, \ldots, i_{d}} \mathbf{X}\left[i_{1}, \ldots, i_{d}\right] \mathbf{Y}\left[i_{1}, \ldots, i_{d}\right]
\end{aligned}
$$

Frobenius norm

The induced Frobenius norm is

$$
\|\mathbf{X}\|_{F}=\sqrt{\langle\mathbf{X}, \mathbf{X}\rangle_{F}}=\sqrt{\sum_{i_{1}, \ldots, i_{d}} \mathbf{X}\left[i_{1}, \ldots, i_{d}\right]^{2}}
$$

which is a crossnorm, meaning that

$$
\left\|\mathbf{x}_{1} \otimes \cdots \otimes \mathbf{x}_{d}\right\|_{F}=\prod_{i=1}^{d}\left\|\mathbf{x}_{i}\right\|
$$

holds for all elementary tensors with $\mathbf{x}_{i} \in \mathbb{R}^{n_{i}}$.

Vectorization

Definition

Vectorization Given the bijection $\varphi: \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{d}} \rightarrow \mathbb{N}_{m_{\text {vec }}}$ with $\mathbb{N}_{m_{\text {vec }}}=n_{1} \cdots n_{d}$ the mapping

$$
\mathrm{Vec}: \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \rightarrow \mathbb{R}^{m_{\mathrm{vec}}} ; \mathbf{X} \mapsto \operatorname{Vec}(\mathbf{X})
$$

with

$$
\operatorname{Vec}(\mathbf{X})[i]=\mathbf{X}\left[\phi^{-1}(i)\right]
$$

Example: We choose φ to be the lexicographical ordering

$$
\varphi: \mathbb{N}_{n_{1}} \times \ldots \times \mathbb{N}_{n_{d}} \rightarrow \mathbb{N}_{m_{\mathrm{vec}}} ;\left(i_{1}, \ldots, i_{d}\right) \mapsto 1+\sum_{k=1}^{d}\left(i_{k}-1\right) \prod_{\ell<k} n_{\ell}
$$

Matricization

Definition

Given the tensor space $\mathbb{R}^{n_{1} \times \ldots \times n_{d}}$, let $\Lambda \subseteq\{1, \ldots, d\}$ denote a subset of the modes and let Λ^{c} be its compliment. We define $m_{1}=\prod_{i \in \Lambda} n_{i}$ and $m_{2}=\prod_{j \in \Lambda^{c}}$. Given a bijection

$$
\begin{aligned}
& \phi: \mathbb{N}_{n_{1}} \times \cdots \mathbb{N}_{n_{d}} \rightarrow \mathbb{N}_{m_{1}} \times \mathbb{N}_{m_{2}} \\
& \quad\left(i_{1}, \ldots, i_{d}\right) \mapsto\left(\phi_{1}\left(i_{k} \mid k \in \Lambda\right), \phi_{2}\left(i_{\ell} \mid \ell \in \Lambda^{c}\right)\right)
\end{aligned}
$$

The map

$$
\operatorname{MAT}_{\Lambda}: \mathbb{R}^{n_{1} \times \cdots n_{d}} \rightarrow \mathbb{R}^{m_{1} \times m_{2}} ; \mathbf{X} \mapsto \operatorname{MAT}_{\Lambda}(\mathbf{X})
$$

where

$$
\operatorname{MAT}_{\Lambda}(\mathbf{X})[i, j]=\mathbf{X}\left(\phi^{-1}(i, j)\right)
$$

is called the Λ-matricization.

