Multi-linear Algebra - Tensor Ranks \& CP decompositionLecture 15

F. M. Faulstich

19/03/2024

Matrix rank

Recall:

A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is of rank r if and only if:

- There are exactly r linearly independent columns in \mathbf{A}
- There are exactly r linearly independent row in \mathbf{A}
- The image of the linear map induced by \mathbf{A} is of dimension r
- r is the smallest number such that exist $\mathbf{u}_{i} \in \mathbb{R}^{m}$ and $\mathbf{v}_{i} \in \mathbb{R}^{n}$ and real numbers $\sigma_{i}>0$ such that

$$
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}
$$

- r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^{m}$ and $U \subseteq \mathbb{R}^{n}$, such that A is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$

Canonical Polyadic (CP) Decomposition

Definition:
Let $\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be a tensor of order d. A representation of \mathbf{X} as a sum of elementary tensors

$$
\mathbf{X}=\sum_{p=1}^{r} \mathbf{v}_{1, p} \otimes \ldots \otimes \mathbf{v}_{d, p}=\sum_{p=1}^{r} \bigotimes_{i=1}^{d} \mathbf{v}_{i, p}
$$

for $\mathbf{v}_{i, p} \in \mathbb{R}^{n_{i}}$ is called a canonical polyadic (CP) representation of \mathbf{X}. The number of terms r is called the "rank of the representation". The minimal r, such that there exists a CP decomposition of X with rank r, is called the canonical rank or CP-rank of \mathbf{X}.

Example

$$
\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]
$$

Example

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =\left[\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]+\left[\left[\begin{array}{cc}
-.5 & -.5 \\
.5 & .5
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right] \\
& =2\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(-.5)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =\left[\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]+\left[\left[\begin{array}{cc}
-.5 & -.5 \\
.5 & .5
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right] \\
& =2\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(-.5)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

The rank of this decomposition is 2 However, we also find

$$
\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]
$$

[^0]
Example

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =\left[\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]+\left[\left[\begin{array}{cc}
-.5 & -.5 \\
.5 & .5
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right] \\
& =2\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(-.5)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

The rank of this decomposition is 2 However, we also find

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =1.5\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +(-2.5)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +2.5\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +(-2.5)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

${ }^{1}$ J. Håstad, Journal of Algorithms, 1990

Example

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =\left[\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]+\left[\left[\begin{array}{cc}
-.5 & -.5 \\
.5 & .5
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right] \\
& =2\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(-.5)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

The rank of this decomposition is 2 However, we also find

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =1.5\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +(-2.5)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +2.5\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +(-2.5)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The rank of this decomposition is 8 .

Example

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =\left[\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right]+\left[\left[\begin{array}{cc}
-.5 & -.5 \\
.5 & .5
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right] \\
& =2\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+(-.5)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

The rank of this decomposition is 2 However, we also find

$$
\begin{aligned}
{\left[\left[\begin{array}{ll}
1.5 & -2.5 \\
2.5 & -2.5
\end{array}\right],\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\right] } & =1.5\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +(-2.5)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +2.5\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +(-2.5)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The rank of this decomposition is 8 .
Deciding whether a rational tensor has CP-rank r is NP-hard ${ }^{1}$

[^1]
CP deocposition

Given a tensor \mathbf{X}, we seek to find

$$
\begin{equation*}
\mathbf{X}_{*}=\underset{\mathrm{CP}-\operatorname{rank}\left(\mathbf{X}_{r}\right) \leq r}{\operatorname{argmin}}\left\|\mathbf{X}-\mathbf{X}_{r}\right\| \tag{1}
\end{equation*}
$$

Matrices:

- Eckart-Young gives insight for unitarily invariant matrices

Tensors

- For many tensor ranks $r \geq 2$ and all orders $d \geq 3$, regardless of the choice of $\|\cdot\|$:

Eq. (1) is ill-defined ${ }^{2}$!

- There are methods calculating approximate CP decompositions of higher-order tensors
\rightarrow Challenging and expensive task
\rightarrow In practice approached using optimization algorithms

[^2]
Set of Tensors with Fixed Canonical Rank

Ill-Definedness of Eq. (1) can be connected to the following problem:
Let's consider

$$
\mathcal{M}_{\leq r}=\left\{\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \mid \mathrm{CP}-\operatorname{rank}(\mathbf{X}) \leq r\right\}
$$

the sequence

$$
\mathbf{X}_{n}=n\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right) \otimes\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right) \otimes\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right)-n \mathbf{u} \otimes \mathbf{u} \otimes \mathbf{u}
$$

with $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{m},\|\mathbf{v}\|=\|\mathbf{u}\|=1$ and $\langle\mathbf{v}, \mathbf{u}\rangle \neq 1$.

Set of Tensors with Fixed Canonical Rank

Ill-Definedness of Eq. (1) can be connected to the following problem:
Let's consider

$$
\mathcal{M}_{\leq r}=\left\{\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \mid \mathrm{CP}-\operatorname{rank}(\mathbf{X}) \leq r\right\}
$$

the sequence

$$
\mathbf{X}_{n}=n\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right) \otimes\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right) \otimes\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right)-n \mathbf{u} \otimes \mathbf{u} \otimes \mathbf{u}
$$

with $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{m},\|\mathbf{v}\|=\|\mathbf{u}\|=1$ and $\langle\mathbf{v}, \mathbf{u}\rangle \neq 1$.
Note that $\mathbf{X}_{n} \in \mathcal{M}_{\leq r}$ for all $n \in \mathbb{N}$, however

$$
\lim _{n \rightarrow \infty} \mathbf{X}_{n}=\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{u}+\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{u}+\mathbf{u} \otimes \mathbf{u} \otimes \mathbf{v} \notin \mathcal{M}_{\leq r}
$$

Set of Tensors with Fixed Canonical Rank

Ill-Definedness of Eq. (1) can be connected to the following problem:
Let's consider

$$
\mathcal{M}_{\leq r}=\left\{\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \mid \mathrm{CP}-\operatorname{rank}(\mathbf{X}) \leq r\right\}
$$

the sequence

$$
\mathbf{X}_{n}=n\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right) \otimes\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right) \otimes\left(\mathbf{u}+\frac{1}{n} \mathbf{v}\right)-n \mathbf{u} \otimes \mathbf{u} \otimes \mathbf{u}
$$

with $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{m},\|\mathbf{v}\|=\|\mathbf{u}\|=1$ and $\langle\mathbf{v}, \mathbf{u}\rangle \neq 1$.
Note that $\mathbf{X}_{n} \in \mathcal{M}_{\leq r}$ for all $n \in \mathbb{N}$, however

$$
\lim _{n \rightarrow \infty} \mathbf{X}_{n}=\mathbf{v} \otimes \mathbf{u} \otimes \mathbf{u}+\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{u}+\mathbf{u} \otimes \mathbf{u} \otimes \mathbf{v} \notin \mathcal{M}_{\leq r}
$$

Similarly

$$
\mathcal{M}_{r}=\left\{\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}} \mid \mathrm{CP}-\operatorname{rank}(\mathbf{X})=r\right\}
$$

is not closed.

Difficulties CP format

- CP decomposition sets have very little structure
- Low-rank matrices for manifolds \rightarrow we can use optimization techniques on Manifolds
- CP rank tensor do not form any kind of manifold \rightarrow optimization on such sets is extremely difficult
- The approximation is ambiguous
\rightarrow Many parameters $\mathbf{v}_{p, i}$ approximate the same tensor equally well
\Rightarrow More in Mitchell \& Burdick, Journal of Chemometrics, 1994
The CP format allows an unparalleled complexity reduction for tensors with small canonical rank!

Computational Aspects of CP decomposition

Recall:

Storing a tensor $\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ requires $\mathcal{O}\left(n^{d}\right)$, where $n=\max _{i} n_{i}$.

Computational Aspects of CP decomposition

Recall:

Storing a tensor $\mathbf{X} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ requires $\mathcal{O}\left(n^{d}\right)$, where $n=\max _{i} n_{i}$.
In the CP format, we store the vector entries $\mathbf{v}_{i, p}$.
\rightarrow requires $\mathcal{O}(n d r)$
\rightarrow linearly in the dimension
What about operations?

Addition in CP format

Consider
Then the addition of \mathbf{X} and $\overline{\mathbf{X}}$ i.e.,

$$
\mathbf{X}+\overline{\mathbf{X}}=\sum_{p=1}^{r} \bigotimes_{i=1}^{d} \mathbf{v}_{i, p}+\sum_{p=1}^{\bar{r}} \bigotimes_{i=1}^{d} \overline{\mathbf{v}}_{i, p}=\sum_{p=1}^{\bar{r}+r} \bigotimes_{i=1}^{d} \mathbf{W}_{i, p}
$$

with

$$
\mathbf{w}_{i, p}=\left\{\begin{array}{ll}
\mathbf{v}_{i, p} & k \leq r \overline{\mathbf{v}}_{i, p} \tag{2}
\end{array} \quad k>r\right.
$$

In order to access the element, we have to perform the following operation

$$
(\mathbf{X}+\overline{\mathbf{X}})\left[i_{1}, \ldots, i_{d}\right]=\left(\sum_{p=1}^{\bar{r}+r} \bigotimes_{k=1}^{d} \mathbf{W}_{i, p}\right)\left[i_{1}, \ldots, i_{d}\right]=\sum_{p=1}^{\bar{r}+r} \prod_{k=1}^{d} \mathbf{W}_{i, p}\left[i_{k}\right]
$$

Which scales as $\mathcal{O}(n d(\bar{r}+r))$, compared to adding two dense tensors $\mathcal{O}\left(n^{d}\right)$

k th-mode contraction

Given a matrix $\mathbf{A} \in \mathbb{R}^{n_{k} \times m}$. Then

$$
\begin{aligned}
\mathbf{X} *_{k} \mathbf{A} & =\left(\sum_{p=1}^{\bar{r}+r} \bigotimes_{k=1}^{d} \mathbf{W}_{i, p}\right) *_{k} \mathbf{A} \\
& =\sum_{p=1}^{\bar{r}+r}\left(\bigotimes_{k=1}^{d} \mathbf{W}_{i, p}\right) *_{k} \mathbf{A} \\
& =\sum_{p=1}^{\bar{r}+r} \mathbf{v}_{1, p} \otimes \ldots \otimes\left(\mathbf{A}^{\top} \mathbf{v}_{k, p}\right) \otimes \ldots \otimes \mathbf{v}_{d, p}
\end{aligned}
$$

Other tensor operations in CP format

Operation	CP-Format	dense tensor
Hadamard Product	$\mathcal{O}(n d r \bar{r})$	$\mathcal{O}\left(n^{d}\right)$
Frobenius Inner Product	$\mathcal{O}(n d r \bar{r})$	$\mathcal{O}\left(n^{d}\right)$
Frobenius Norm	$\mathcal{O}\left(n d r^{2}\right)$	$\mathcal{O}\left(n^{d}\right)$
k-mode product	$\mathcal{O}((d+m) n r)$	$\mathcal{O}\left(n^{d} m\right)$

[^0]: ${ }^{1}$ J. Håstad, Journal of Algorithms, 1990

[^1]: ${ }^{1}$ J. Håstad, Journal of Algorithms, 1990

[^2]: ${ }^{2}$ De Silva \& Lim, SIAM Journal on Matrix Analysis and Applications, 2008

