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Matrix rank

Recall:

A matrix A ∈ Rm×n is of rank r if and only if:

• There are exactly r linearly independent columns in A

• There are exactly r linearly independent row in A

• The image of the linear map induced by A is of dimension r

• r is the smallest number such that exist ui ∈ Rm and vi ∈ Rn and
real numbers σi > 0 such that

A =

r∑
i=1

σiuiv
>
i =

r∑
i=1

σiui ⊗ vi

• r is the smallest number, such that there exist r-dimensional
subspaces V ⊆ Rm and U ⊆ Rn, such that A is an element of the
induced tensor space V ⊗ U ⊆ Rm×n
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Canonical Polyadic (CP) Decomposition

Definition:
Let X ∈ Rn1×...×nd be a tensor of order d. A representation of X as a sum
of elementary tensors

X =

r∑
p=1

v1,p ⊗ ...⊗ vd,p =

r∑
p=1

d⊗
i=1

vi,p

for vi,p ∈ Rni is called a canonical polyadic (CP) representation of X.
The number of terms r is called the “rank of the representation”. The
minimal r, such that there exists a CP decomposition of X with rank r,
is called the canonical rank or CP-rank of X.
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Example

[[
1.5 −2.5
2.5 −2.5

]
,

[
−2 2
−2 2

]]

=

[[
2 −2
2 −2

]
,

[
−2 2
−2 2

]]
+

[[
−.5 −.5
.5 .5

]
,

[
0 0
0 0

]]
= 2

[
1
1

]
⊗

[
1
−1

]
⊗

[
1
−1

]
+ (−.5)

[
1
−1

]
⊗

[
1
1

]
⊗

[
1
0

]
The rank of this decomposition is 2

However, we also find[[
1.5 −2.5
2.5 −2.5

]
,

[
−2 2
−2 2

]]
= 1.5

[
1
0

]
⊗

[
1
0

]
⊗

[
1
0

]
+ (−2)

[
1
0

]
⊗

[
1
0

]
⊗

[
0
1

]
+ (−2.5)

[
1
0

]
⊗

[
0
1

]
⊗

[
1
0

]
+ 2

[
1
0

]
⊗

[
0
1

]
⊗

[
0
1

]
+ 2.5

[
0
1

]
⊗

[
1
0

]
⊗

[
1
0

]
+ (−2)

[
0
1

]
⊗

[
1
0

]
⊗

[
0
1

]
+ (−2.5)

[
0
1

]
⊗

[
0
1

]
⊗

[
1
0

]
+ 2

[
0
1

]
⊗

[
0
1

]
⊗

[
0
1

]
The rank of this decomposition is 8.

Deciding whether a rational tensor has CP-rank r is NP-hard 1

1J. H̊astad, Journal of Algorithms, 1990
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CP deocposition

Given a tensor X, we seek to find

X∗ = argmin
CP−rank(Xr)≤r

‖X−Xr‖ (1)

Matrices:

• Eckart–Young gives insight for unitarily invariant matrices

Tensors

• For many tensor ranks r ≥ 2 and all orders d ≥ 3, regardless of the
choice of ‖ · ‖:

Eq. (1) is ill-defined2!

• There are methods calculating approximate CP decompositions of
higher-order tensors
→ Challenging and expensive task
→ In practice approached using optimization algorithms

2De Silva & Lim, SIAM Journal on Matrix Analysis and Applications, 2008
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Set of Tensors with Fixed Canonical Rank
Ill-Definedness of Eq. (1) can be connected to the following problem:

Let’s consider

M≤r =
{
X ∈ Rn1×...×nd | CP− rank(X) ≤ r

}
the sequence

Xn = n

(
u +

1

n
v

)
⊗
(
u +

1

n
v

)
⊗
(
u +

1

n
v

)
− nu⊗ u⊗ u

with u, v ∈ Rm, ‖v‖ = ‖u‖ = 1 and 〈v,u〉 6= 1.

Note that Xn ∈M≤r for all n ∈ N, however

lim
n→∞

Xn = v ⊗ u⊗ u + u⊗ v ⊗ u + u⊗ u⊗ v /∈M≤r

Similarly
Mr =

{
X ∈ Rn1×...×nd | CP− rank(X) = r

}
is not closed.
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Difficulties CP format

• CP decomposition sets have very little structure

• Low-rank matrices for manifolds
→ we can use optimization techniques on Manifolds

• CP rank tensor do not form any kind of manifold → optimization on
such sets is extremely difficult

• The approximation is ambiguous
→ Many parameters vp,i approximate the same tensor equally well

⇒ More in Mitchell & Burdick, Journal of Chemometrics, 1994

The CP format allows an unparalleled complexity reduction for tensors
with small canonical rank!
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Computational Aspects of CP decomposition

Recall:

Storing a tensor X ∈ Rn1×...×nd requires O(nd), where n = maxi ni.

In the CP format, we store the vector entries vi,p.
→ requires O(ndr)
→ linearly in the dimension

What about operations?
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Addition in CP format

Consider
Then the addition of X and X̄ i.e.,

X + X̄ =

r∑
p=1

d⊗
i=1

vi,p +

r̄∑
p=1

d⊗
i=1

v̄i,p =

r̄+r∑
p=1

d⊗
i=1

Wi,p

with
wi,p =

{
vi,p k ≤ rv̄i,p k > r (2)

In order to access the element, we have to perform the following operation

(X + X̄)[i1, ..., id] =

r̄+r∑
p=1

d⊗
k=1

Wi,p

 [i1, ..., id] =

r̄+r∑
p=1

d∏
k=1

Wi,p[ik]

Which scales as O(nd(r̄ + r)), compared to adding two dense tensors
O(nd)
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kth-mode contraction

Given a matrix A ∈ Rnk×m. Then

X ∗k A =

r̄+r∑
p=1

d⊗
k=1

Wi,p

 ∗k A
=

r̄+r∑
p=1

(
d⊗

k=1

Wi,p

)
∗k A

=

r̄+r∑
p=1

v1,p ⊗ ...⊗
(
A>vk,p

)
⊗ ...⊗ vd,p
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Other tensor operations in CP format

Operation CP-Format dense tensor

Hadamard Product O(ndrr̄) O(nd)
Frobenius Inner Product O(ndrr̄) O(nd)

Frobenius Norm O(ndr2) O(nd)
k-mode product O((d+m)nr) O(ndm)


