Multi-linear Algebra – Tucker Decomposition – Lecture 16

F. M. Faulstich

22/03/2024

Recap

Recap

- Tensors: high-dimensional object
- Tensor diagrams: graphical representation of tensor operations
- Tensor decomposition
 CP decomposition
 low-rank approximation
 - $\rightarrow \, {\rm tensor \, \, rank?}$

CP decomposition Format

Pros:

CP decomposition Format

Pros:

- Provides a notion of tensor rank CP-rank
- Very good compression
- Reduction of tensor algebra

Cons:

CP decomposition Format

Pros:

- Provides a notion of tensor rank CP-rank
- Very good compression
- Reduction of tensor algebra

Cons:

- Hard to find
 - \rightarrow No systematic way to compute a CP decomposition
- Difficult tensor sets:

$$\mathcal{M}_r = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \dots \times n_d} \mid \text{ CP-rank}(\mathbf{X}) = r \right\}$$

and

$$\mathcal{M}_{\leq r} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times ... \times n_d} \mid \text{ CP-rank}(\mathbf{X}) \leq r \right\}$$

are not closed.

 \rightarrow Not easy to optimize on.

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

What does this mean?

Let $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_i\}$ be bases of U and V, respectively.

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

What does this mean?

Let $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_i\}$ be bases of U and V, respectively. Then

$$\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \bar{\mathbf{v}}_i$$

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

What does this mean?

Let $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_i\}$ be bases of U and V, respectively. Then

$$\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \bar{\mathbf{v}}_i = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^* = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

In the matrix case:

$$V = \operatorname{Im}(\mathbf{A}) \text{ and } U = \mathbb{R}^m / \ker(\mathbf{A})$$

 \rightarrow their dimension always coincide!

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$?

- \bullet Find minimal subspaces s.t. ${\bf A}$ is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$?

- \bullet Find minimal subspaces s.t. ${\bf A}$ is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

Let $\{U_k\}_{k=1}^d$ be a collection of subsets with $U_k \subseteq \mathbb{R}^{n_k}$.

 $^{^{1}\}dim(U_{k})=r_{k}$

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$?

- \bullet Find minimal subspaces s.t. ${\bf A}$ is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

Let $\{U_k\}_{k=1}^d$ be a collection of subsets with $U_k \subseteq \mathbb{R}^{n_k}$. For each subspace U_k we have an orthonormal basis¹ $\{\mathbf{u}_{k,i}\}_{i=1}^{r_k}$ A tensor $\mathbf{A} \in \bigotimes_{k=1}^d U_k$ can then be expressed as

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

 $^{1}\dim(U_{k})=r_{k}$

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$?

- \bullet Find minimal subspaces s.t. ${\bf A}$ is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

Let $\{U_k\}_{k=1}^d$ be a collection of subsets with $U_k \subseteq \mathbb{R}^{n_k}$. For each subspace U_k we have an orthonormal basis¹ $\{\mathbf{u}_{k,i}\}_{i=1}^{r_k}$ A tensor $\mathbf{A} \in \bigotimes_{k=1}^d U_k$ can then be expressed as

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

 \Rightarrow **C** $\in \mathbb{R}^{r_1 \times ... \times r_d}$, called the *core tensor*

 $^{^{1}\}dim(U_{k})=r_{k}$

We may interpret

$$\mathbf{U}_k = [\mathbf{u}_{k,1}|...|\mathbf{u}_{k,r_k}]^{\top} \in \mathbb{R}^{r_k \times n_k}$$

with elements

$$\mathbf{U}_k[i_k, j] = \mathbf{u}_{k, i_k}[j]$$
 for $1 \le i_k \le r_k$ and $1 \le j \le n_k$

We may interpret

$$\mathbf{U}_k = [\mathbf{u}_{k,1}|...|\mathbf{u}_{k,r_k}]^{\top} \in \mathbb{R}^{r_k \times n_k}$$

with elements

$$\mathbf{U}_k[i_k, j] = \mathbf{u}_{k, i_k}[j]$$
 for $1 \le i_k \le r_k$ and $1 \le j \le n_k$

Then

$$\mathbf{A} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d$$

where $*_k$ is the kth mode contraction of **C** with \mathbf{U}_k .

We may interpret

$$\mathbf{U}_k = [\mathbf{u}_{k,1}|...|\mathbf{u}_{k,r_k}]^{\top} \in \mathbb{R}^{r_k \times n_k}$$

with elements

$$\mathbf{U}_k[i_k, j] = \mathbf{u}_{k, i_k}[j]$$
 for $1 \le i_k \le r_k$ and $1 \le j \le n_k$

Then

$$\mathbf{A} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d$$

where $*_k$ is the kth mode contraction of \mathbf{C} with \mathbf{U}_k .

Elementwise:

$$\mathbf{A}[j_1,...,j_d] = \sum_{i_1,...,i_d} \mathbf{C}[i_1,...,i_d] \mathbf{U}_1[i_1,j_1] \cdot \mathbf{U}_2[i_2,j_2] \cdot \cdot \cdot \mathbf{U}_d[i_d,j_d]$$

Tucker rank

Given a Tucker decomposition

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

We call the tuple

$$\mathbf{r}=(r_1,r_2,...,r_d)$$

the rank of the associated decomposition.

The $Tucker\ rank\ (T-rank)\ {f r}$ is the minimal d-tuple such that there exists a Tucker representation of ${f A}$.

What does minimal mean?

Tucker rank

Given a Tucker decomposition

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

We call the tuple

$$\mathbf{r} = (r_1, r_2, ..., r_d)$$

the rank of the associated decomposition.

The $Tucker\ rank\ (T-rank)\ {\bf r}$ is the minimal d-tuple such that there exists a Tucker representation of ${\bf A}$.

What does minimal mean? Partial order of d-tuples:

On the set of d-tuples we define the partial order \leq as

$$(x_1,...,x_d) = \mathbf{x} \preceq \mathbf{y} = (y_1,...,y_d) \quad \Leftrightarrow \quad x_i \leq y_i \ \forall i$$

Why Tucker?

- Looks a bit more complicated than CP decomposition
 - \rightarrow How to find the subspaces?
 - \rightarrow Rank definition aligns less with what we know from matrices!
- Can be computed constructively
 - \rightarrow higher-order SVD (HOSVD)
- Tensors of bounded or fixed Tucker rank are much nicer
 - \rightarrow Manifold structure \rightarrow Closed set

high-order SVD

Algorithm:

```
Input: Target tensor \mathbf{A}

Output: Core tensor \mathbf{C}, basis matrices \mathbf{U}_k \in \mathbb{R}^{r_k \times n_k} for 1 \leq k \leq d

for k = 1 : d

Calculate \tilde{\mathbf{U}}_k \mathbf{\Sigma}_k \mathbf{V}^* = \text{SVD}(\mathbf{A}^{(k)})

[Recall notation: \mathbf{A}^{(k)} was the k-mode matricization]

\mathbf{U}_k = \tilde{\mathbf{U}}_k^{\top}

Calculate \mathbf{C} = \mathbf{A} *_1 \mathbf{U}_1^{\top} *_2 \mathbf{U}_2^{\top} \dots *_d \mathbf{U}_d^{\top}
```

high-order SVD

The HOSVD yields Tucker decomposition of minimal rank:

Theorem

Given a tensor $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$, let $\mathbf{C} \in \mathbb{R}^{r_1 \times ... \times r_d}$ and $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \le k \le d$ be the core and basis matrices obtained with the HOSVD. Then

$$\mathbf{A} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d$$

is a Tucker representation of \mathbf{A} of minimal rank. The obtained representation rank is also the Tucker rank of \mathbf{A} , is related to the matrix rank of the kth mode matricizations via

$$T-rank(\mathbf{A}) = \left(rank(\mathbf{A}^{(1)}), rank(\mathbf{A}^{(2)}), ..., rank(\mathbf{A}^{(d)})\right)$$

Low T-rank approximation

Ee can adjust the HOSVD to get a T-rank approximation of $\bf A$ of rank $\bf r'$ Input: Target tensor A Output: Core tensor C, basis matrices $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for 1 < k < dSet $\mathbf{A}_0 = \mathbf{A}$ for k = 1 : dCalculate rank r'_k -SVD: $\tilde{\mathbf{U}}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\top} = \text{SVD}_{r'_k}(\mathbf{A}_{k-1}^{(k)})$ Set $\mathbf{A}_{k}^{(k)} = \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\top}$ $\mathbf{U}_k = \mathbf{U}_k^{\top}$ $\mathbf{C} = \mathbf{A} *_1 \mathbf{U}_1^{\top} *_2 \mathbf{U}_2^{\top} ... *_d \mathbf{U}_d^{\top}$

Quasi Best Approximation

There is no Eckart-Young theorem for low T-rank approximations!

Theorem:

Given a tensor $\mathbf{A} \in \mathbb{R}^{n_1 \times ... \times n_d}$, let $\mathbf{C} \in \mathbb{R}^{r_1 \times ... \times r_d}$ and $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \leq k \leq d$ be the core and basis matrices obtained with the rank \mathbf{r}' -truncated HOSVD. These define a rank \mathbf{r}' Tucker approximation

$$\mathbf{A}' = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d.$$

The tensor A' is a quasi-best rank r' approximation to A, i.e.,

$$\|\mathbf{A} - \mathbf{A}'\|_F \le \sqrt{d} \min \{\|\mathbf{A} - \mathbf{Y}\|_F \mid \mathbf{Y} \in \mathbb{R}^{n_1 \times \dots \times n_d}, \text{ T-rank}(\mathbf{Y}) \le \mathbf{r}' \}$$

The Tucker manifold

Theorem [Tucker manifold]:

The set

$$\mathcal{M}_r^{\mathrm{T}} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \dots \times n_d} \mid \text{ T-rank}(\mathbf{X}) = r \right\}$$

admits a manifold structure².

²Uschmajew & Vandereycken. Linear Algebra and its Applications (2013)

The Tucker manifold

Theorem [Tucker manifold]:

The set

$$\mathcal{M}_r^{\mathrm{T}} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \dots \times n_d} \mid \text{ T-rank}(\mathbf{X}) = r \right\}$$

admits a manifold structure².

Proposition:

The set

$$\mathcal{M}_{\preccurlyeq r}^{\mathrm{T}} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \dots \times n_d} \mid \text{ T-rank}(\mathbf{X}) \preccurlyeq r \right\}$$

is closed.

²Uschmajew & Vandereycken. Linear Algebra and its Applications (2013)

Storage of Tucker decomposition

We store:

- the core tensor $\mathbf{C} \in \mathbb{R}^{r_1 \times ... \times r_d}$
- the basis matrices $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \le k \le d$

This scales as

$$\mathcal{O}(r^d + dnr)$$

where $r = \max_{i}(r_i)$ and $n = \max_{i}(n_i)$

Note that for $r \ll n$ this is a significant reduction over $\mathcal{O}(n^d)$

Accessing entries

One has to compute

$$\begin{aligned} \mathbf{A}[j_1,...,j_d] &= (\mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d) [j_1,...,j_d] \\ &= \sum_{i_1=1}^{r_1} ... \sum_{i_d=1}^{r_d} \mathbf{C}[i_1,...,i_d] \mathbf{U}_1[i_1,j_1] \mathbf{U}_2[i_2,j_2] ... \mathbf{U}_d[i_d,j_d] \end{aligned}$$

set $r = \max_i(r_i)$.

- Per for-loop we have $\mathcal{O}(r)$ operations
- For d nested for-loops this yields: $\mathcal{O}(r^d)$
- Recall: $\mathcal{O}(dr)$ for CP-decomposition

Adding Tucker decompositions

Consider

$$\mathbf{X} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d$$

and

$$\bar{\mathbf{X}} = \bar{\mathbf{C}} *_1 \bar{\mathbf{U}}_1 *_2 \bar{\mathbf{U}}_2 ... *_d \bar{\mathbf{U}}_d$$

Define

$$\mathbf{V}_k = egin{bmatrix} \mathbf{U}_k \ ar{\mathbf{U}}_k \end{bmatrix} \in \mathbb{R}^{(r_k + ar{r}_k) imes n_k}$$

and

$$\mathbf{D}[i_1,...,i_d] = \begin{cases} \mathbf{C}[i_1,...,i_d] & \text{if } i_\ell \le r_\ell \ \forall \ell \\ \bar{\mathbf{C}}[i_1-r_1,...,i_d-r_d] & \text{if } i_\ell > r_\ell \ \forall \ell \\ 0 & \text{else} \end{cases}$$

Adding Tucker decompositions

Then

$$\begin{split} (\mathbf{X} + \bar{\mathbf{X}})[j_1, ..., j_d] &= \sum_{i_1 = 1}^{r_1} ... \sum_{i_d = 1}^{r_d} \mathbf{C}[i_1, ..., i_d] \mathbf{U}_1[i_1, j_1] \cdots \mathbf{U}_d[i_d, j_d] \\ &+ \sum_{i_1 = 1}^{\bar{r}_1} ... \sum_{i_d = 1}^{\bar{r}_d} \bar{\mathbf{C}}[i_1, ..., i_d] \bar{\mathbf{U}}_1[i_1, j_1] \cdots \bar{\mathbf{U}}_d[i_d, j_d] \\ &= \sum_{i_1 = 1}^{r_1 + \bar{r}_1} ... \sum_{i_d = 1}^{r_d + \bar{r}_d} \mathbf{D}[i_1, ..., i_d] \mathbf{V}_1[i_1, j_1] \cdots \mathbf{V}_d[i_d, j_d] \end{split}$$

Setting $r = \max_i(r_i)$ and $\bar{r} = \max_i(\bar{r}_i)$

The storage scales as

$$\mathcal{O}\left((r+\bar{r})^d+dn(r+\bar{r})\right)$$

and evaluating elements scales

$$\mathcal{O}\left((r+\bar{r})^d\right)$$

Other operations

Operation	Tucker	CP	Tensor
Had. Prod.	$\mathcal{O}(ndr\bar{r} + r^d\bar{r}^d)$	$\mathcal{O}(ndrar{r})$	$\mathcal{O}(n^d)$
Frob. In. Prod.	$\mathcal{O}(ndr\bar{r} + dr\bar{r}^d + r^d)$	$\mathcal{O}(ndrar{r})$	$\mathcal{O}(n^d)$
Frob. Norm	$\mathcal{O}(r^d)$	$\mathcal{O}(ndr^2)$	$\mathcal{O}(n^d)$
k-mode Prod.	$\mathcal{O}(mnr + mr^2 + r^{d+1})$	$\mathcal{O}((d+m)nr)$	$\mathcal{O}(n^d m)$