Multi-linear Algebra – Tucker Decomposition – Lecture 16

F. M. Faulstich

22/03/2024

Recap

Recap

- Tensors: high-dimensional object
- Tensor diagrams: graphical representation of tensor operations
- Tensor decomposition CP decomposition low-rank approximation
 - \rightarrow tensor rank?

CP decomposition Format Pros:

CP decomposition Format

Pros:

- Provides a notion of tensor rank CP-rank
- Very good compression
- Reduction of tensor algebra

Cons:

CP decomposition Format

Pros:

- Provides a notion of tensor rank CP-rank
- Very good compression
- Reduction of tensor algebra

Cons:

• Hard to find

 \rightarrow No systematic way to compute a CP decomposition

• Difficult tensor sets:

$$\mathcal{M}_r = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \dots \times n_d} \mid \text{ CP-rank}(\mathbf{X}) = r \right\}$$

and

$$\mathcal{M}_{\leq r} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \dots \times n_d} \mid \text{ CP-rank}(\mathbf{X}) \leq r \right\}$$

are not closed.

 \rightarrow Not easy to optimize on.

Λ

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

What does this mean? Let $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_i\}$ be bases of U and V, respectively.

Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

What does this mean? Let $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_i\}$ be bases of U and V, respectively. Then

$$\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \bar{\mathbf{v}}_i$$

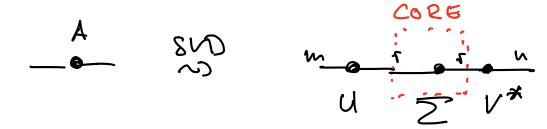
Recall the rank characterization:

" r is the smallest number, such that there exist r-dimensional subspaces $V \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$, such that **A** is an element of the induced tensor space $V \otimes U \subseteq \mathbb{R}^{m \times n}$ "

What does this mean? Let $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_i\}$ be bases of U and V, respectively. Then $\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \otimes \bar{\mathbf{v}}_i = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^* = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ In the matrix case: $\mathbf{d}_{i\mathbf{u}} (\mathcal{U}) = \mathbf{r} = \mathbf{d}_{i\mathbf{u}} (V)$

$$V = \text{Im}(\mathbf{A}) \text{ and } U = \mathbb{R}^m / \text{ker}(\mathbf{A})$$

 \rightarrow their dimension **always** coincide!



How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$?

- Find minimal subspaces s.t. **A** is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n} \times ... \times n$?

- Find minimal subspaces s.t. **A** is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

Let $\{U_k\}_{k=1}^d$ be a collection of subsets with $U_k \subseteq \mathbb{R}^{n_k}$.

$$^{1}\dim(U_{k}) = r_{k}$$

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$?

- Find minimal subspaces s.t. **A** is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

Let $\{U_k\}_{k=1}^d$ be a collection of subsets with $U_k \subseteq \mathbb{R}^{n_k}$. For each subspace U_k we have an orthonormal basis¹ $\{\mathbf{u}_{k,i}\}_{i=1}^{r_k}$ A tensor $\mathbf{A} \in \bigotimes_{k=1}^d U_k$ can then be expressed as

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

$$^{1}\dim(U_{k}) = r_{k}$$

How do we generalize this to tensors $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$?

- Find minimal subspaces s.t. **A** is an element of the induced tensor space
- The dimensions of these subspaces may not be equal

Let $\{U_k\}_{k=1}^d$ be a collection of subsets with $U_k \subseteq \mathbb{R}^{n_k}$. For each subspace U_k we have an orthonormal basis¹ $\{\mathbf{u}_{k,i}\}_{i=1}^{r_k}$ A tensor $\mathbf{A} \in \bigotimes_{k=1}^d U_k$ can then be expressed as

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

 $\Rightarrow \mathbf{C} \in \mathbb{R}^{r_1 \times \ldots \times r_d}$, called the *core tensor*

 $^{1}\dim(U_k) = r_k$

We may interpret

$$\mathbf{U}_k = [\mathbf{u}_{k,1}|...|\mathbf{u}_{k,r_k}]^\top \in \mathbb{R}^{r_k \times n_k}$$

with elements

$$\mathbf{U}_k[i_k, j] = \mathbf{u}_{k, i_k}[j]$$
 for $1 \le i_k \le r_k$ and $1 \le j \le n_k$

We may interpret

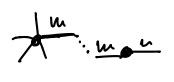
$$\mathbf{U}_k = [\mathbf{u}_{k,1}|...|\mathbf{u}_{k,r_k}]^\top \in \mathbb{R}^{r_k \times n_k}$$

with elements

$$\mathbf{U}_k[i_k, j] = \mathbf{u}_{k, i_k}[j]$$
 for $1 \le i_k \le r_k$ and $1 \le j \le n_k$

Then

$$\mathbf{A} = \mathbf{C} \ast_1 \mathbf{U}_1 \ast_2 \mathbf{U}_2 \dots \ast_d \mathbf{U}_d$$



Then $\mathbf{A} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 \dots *_d \mathbf{U}_d$ where $*_k$ is the *k*th mode contraction of \mathbf{C} with \mathbf{U}_k .

We may interpret

$$\mathbf{U}_k = [\mathbf{u}_{k,1}|...|\mathbf{u}_{k,r_k}]^\top \in \mathbb{R}^{r_k \times n_k}$$

with elements

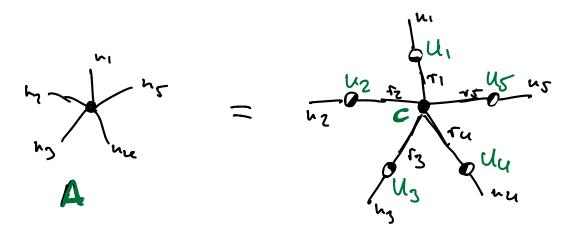
$$\mathbf{U}_k[i_k, j] = \mathbf{u}_{k, i_k}[j] \quad \text{for } 1 \le i_k \le r_k \text{ and } 1 \le j \le n_k$$

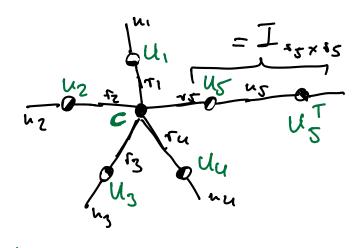
Then

$$\mathbf{A} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 \dots *_d \mathbf{U}_d$$

where $*_k$ is the *k*th mode contraction of **C** with \mathbf{U}_k . Elementwise:

$$\mathbf{A}[j_1, ..., j_d] = \sum_{i_1, ..., i_d} \mathbf{C}[i_1, ..., i_d] \mathbf{U}_1[i_1, j_1] \cdot \mathbf{U}_2[i_2, j_2] \cdots \mathbf{U}_d[i_d, j_d]$$





A

Tucker rank

Given a Tucker decomposition

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

We call the tuple

$$\mathbf{r} = (r_1, r_2, \dots, r_d)$$

the rank of the associated decomposition.

The *Tucker rank* (T-rank) \mathbf{r} is the minimal *d*-tuple such that there exists a Tucker representation of \mathbf{A} .

What does minimal mean?

Tucker rank

Given a Tucker decomposition

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1, i_1} \otimes \mathbf{u}_{2, i_2} \otimes \cdots \otimes \mathbf{u}_{d, i_1}$$

We call the tuple

$$\mathbf{r} = (r_1, r_2, \dots, r_d)$$

the rank of the associated decomposition.

The *Tucker rank* (T-rank) \mathbf{r} is the minimal *d*-tuple such that there exists a Tucker representation of \mathbf{A} .

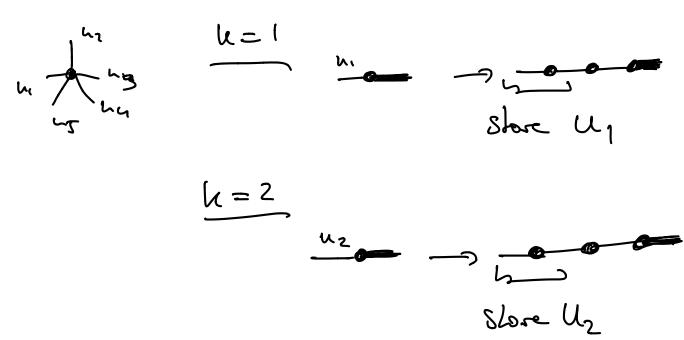
What does minimal mean? Partial order of *d*-tuples: On the set of *d*-tuples we define the partial order \preccurlyeq as

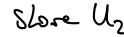
$$(x_1, ..., x_d) = \mathbf{x} \preccurlyeq \mathbf{y} = (y_1, ..., y_d) \quad \Leftrightarrow \quad x_i \le y_i \quad \forall i$$

- Looks a bit more complicated than CP decomposition
 - \rightarrow How to find the subspaces?
 - \rightarrow Rank definition aligns less with what we know from matrices!
- Can be computed constructively \rightarrow higher-order SVD (HOSVD)
- Tensors of bounded or fixed Tucker rank are much nicer \rightarrow Manifold structure \rightarrow Closed set

Algorithm:

Input: Target tensor A Output: Core tensor **C**, basis matrices $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \leq k \leq d$ Calculate $\tilde{\mathbf{U}}_k \boldsymbol{\Sigma}_k \mathbf{V}^* = \text{SVD}(\mathbf{A}^{(k)})$ for k = 1 : d[Recall notation: $\mathbf{A}^{(k)}$ was the k-mode matricization] $\mathbf{U}_k = \tilde{\mathbf{U}}_k^\top$ Calculate $\mathbf{C} = \mathbf{A} *_1 \mathbf{U}_1^\top *_2 \mathbf{U}_2^\top \dots *_d \mathbf{U}_d^\top$ $= A \neq U_1 \neq U_2 \neq U_2 \neq U_4 \qquad T$





high-order SVD

The HOSVD yields Tucker decomposition of minimal rank:

Theorem

Given a tensor $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$, let $\mathbf{C} \in \mathbb{R}^{r_1 \times \ldots \times r_d}$ and $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \leq k \leq d$ be the core and basis matrices obtained with the HOSVD. Then

$$\mathbf{A} = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 \dots *_d \mathbf{U}_d$$

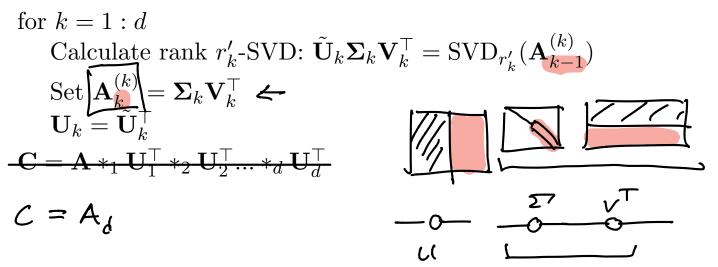
is a Tucker representation of \mathbf{A} of minimal rank. The obtained representation rank is also the Tucker rank of \mathbf{A} , is related to the matrix rank of the *k*th mode matricizations via

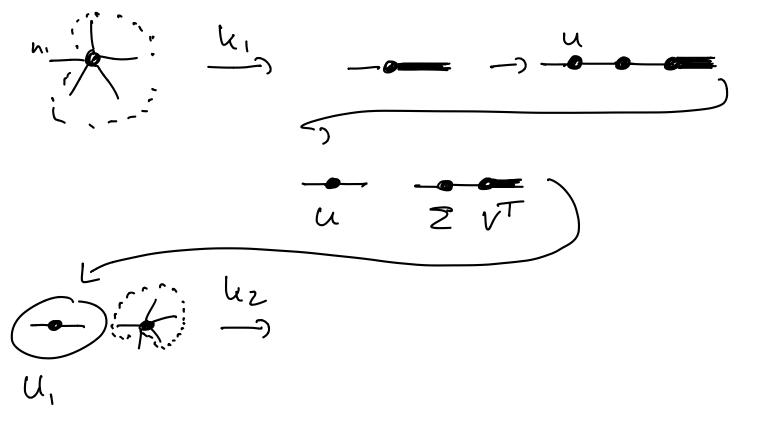
$$\operatorname{T-rank}(\mathbf{A}) = \left(\operatorname{rank}(\mathbf{A}^{(1)}), \operatorname{rank}(\mathbf{A}^{(2)}), \dots, \operatorname{rank}(\mathbf{A}^{(d)})\right)$$

Low T-rank approximation

Ee can adjust the HOSVD to get a T-rank approximation of \mathbf{A} of rank $\mathbf{r'}$ Input: Target tensor \mathbf{A}

Output: Core tensor \mathbf{C} , basis matrices $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \le k \le d$ Set $\mathbf{A}_0 = \mathbf{A}$





Quasi Best Approximation

There is no Eckart-Young theorem for low T-rank approximations!

Theorem:

Given a tensor $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$, let $\mathbf{C} \in \mathbb{R}^{r_1 \times \ldots \times r_d}$ and $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \leq k \leq d$ be the core and basis matrices obtained with the rank \mathbf{r}' -truncated HOSVD. These define a rank \mathbf{r}' Tucker approximation

$$\mathbf{A}' = \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 \dots *_d \mathbf{U}_d.$$

The tensor \mathbf{A}' is a quasi-best rank \mathbf{r}' approximation to \mathbf{A} , i.e.,

$$\|\mathbf{A} - \mathbf{A}'\|_F \le \sqrt{d} \min\left\{\|\mathbf{A} - \mathbf{Y}\|_F \mid \mathbf{Y} \in \mathbb{R}^{n_1 \times \dots \times n_d}, \text{ T-rank}(\mathbf{Y}) \preccurlyeq \mathbf{r}'\right\}$$

The Tucker manifold

Theorem [Tucker manifold]: The set

$$\mathcal{M}_r^{\mathrm{T}} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \ldots \times n_d} \mid \text{T-rank}(\mathbf{X}) = r \right\}$$

admits a manifold structure².

²Uschmajew & Vandereycken. Linear Algebra and its Applications (2013)

The Tucker manifold

Theorem [Tucker manifold]: The set

$$\mathcal{M}_r^{\mathrm{T}} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \ldots \times n_d} \mid \text{ T-rank}(\mathbf{X}) = r \right\}$$

admits a manifold structure².

Proposition:

The set

$$\mathcal{M}_{\preccurlyeq r}^{\mathrm{T}} = \left\{ \mathbf{X} \in \mathbb{R}^{n_1 \times \ldots \times n_d} \mid \text{T-rank}(\mathbf{X}) \preccurlyeq r \right\}$$

is closed.

²Uschmajew & Vandereycken. Linear Algebra and its Applications (2013)

Storage of Tucker decomposition

$$A = \mathcal{A} \ast_{1} \mathcal{U}_{1} \ast_{2} \mathcal{U}_{2} \ldots \ast_{d} \mathcal{U}_{d}$$

We store:

- the core tensor $\mathbf{C} \in \mathbb{R}^{r_1 \times \ldots \times r_d}$
- the basis matrices $\mathbf{U}_k \in \mathbb{R}^{r_k \times n_k}$ for $1 \le k \le d$

This scales as

$$\mathcal{O}(r^d + dnr)$$

where $r = \max_i(r_i)$ and $n = \max_i(n_i)$

Note that for $r \ll n$ this is a significant reduction over $\mathcal{O}(n^d)$

$$A = \sum_{\substack{p=1\\j=1}}^{r} \bigotimes_{i=1}^{d} \vartheta_{i,p} \qquad G(rud)$$

Accessing entries

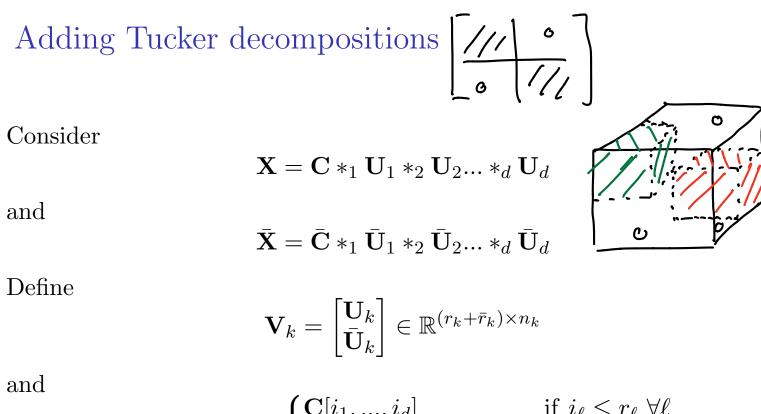
One has to compute

$$\mathbf{A}[j_1, ..., j_d] = (\mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d) [j_1, ..., j_d]$$

= $\sum_{i_1=1}^{r_1} ... \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \mathbf{U}_1[i_1, j_1] \mathbf{U}_2[i_2, j_2] ... \mathbf{U}_d[i_d, j_d]$

set $r = \max_i(r_i)$.

- Per for-loop we have $\mathcal{O}(r)$ operations
- For d nested for-loops this yields: $\mathcal{O}(r^d)$
- Recall: $\mathcal{O}(dr)$ for CP-decomposition



$$\mathbf{D}[i_1, \dots, i_d] = \begin{cases} \mathbf{C}[i_1, \dots, i_d] & \text{if } i_\ell \le r_\ell \ \forall \ell \\ \bar{\mathbf{C}}[i_1 - r_1, \dots, i_d - r_d] & \text{if } i_\ell > r_\ell \ \forall \ell \\ 0 & \text{else} \end{cases}$$

Adding Tucker decompositions Then

$$\begin{aligned} (\mathbf{X} + \bar{\mathbf{X}})[j_1, ..., j_d] &= \sum_{i_1=1}^{r_1} \dots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \mathbf{U}_1[i_1, j_1] \cdots \mathbf{U}_d[i_d, j_d] \\ &+ \sum_{i_1=1}^{\bar{r}_1} \dots \sum_{i_d=1}^{\bar{r}_d} \bar{\mathbf{C}}[i_1, ..., i_d] \bar{\mathbf{U}}_1[i_1, j_1] \cdots \bar{\mathbf{U}}_d[i_d, j_d] \\ &= \sum_{i_1=1}^{r_1 + \bar{r}_1} \dots \sum_{i_d=1}^{r_d + \bar{r}_d} \mathbf{D}[i_1, ..., i_d] \mathbf{V}_1[i_1, j_1] \cdots \mathbf{V}_d[i_d, j_d] \end{aligned}$$

Setting $r = \max_i(r_i)$ and $\bar{r} = \max_i(\bar{r}_i)$ The storage scales as

$$\mathcal{O}\left((r+\bar{r})^d + dn(r+\bar{r})\right)$$

and evaluating elements scales

$$\mathcal{O}\left((r+\bar{r})^d\right)$$

Other operations

_

Operation	Tucker	CP	Tensor
Had. Prod.	$\mathcal{O}(ndr\bar{r}+r^d\bar{r}^d)$	$\mathcal{O}(ndrar{r})$	$\mathcal{O}(n^d)$
Frob. In. Prod.	$\mathcal{O}(ndr\bar{r}+dr\bar{r}^d+r^d)$	$\mathcal{O}(ndrar{r})$	$\mathcal{O}(n^d)$
Frob. Norm	$\mathcal{O}(r^d)$	$\mathcal{O}(ndr^2)$	$\mathcal{O}(n^d)$
k-mode Prod.	$\int \mathcal{O}(mnr+mr^2+r^{d+1})$	$\mathcal{O}((d+m)nr)$	$\mathcal{O}(n^d m)$