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Recap

• Tensors:
high-dimensional object

• Tensor diagrams:
graphical representation of tensor operations

• Tensor decomposition
CP decomposition
low-rank approximation
! tensor rank?
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CP decomposition Format

Pros:

• Provides a notion of tensor rank
CP-rank

• Very good compression

• Reduction of tensor algebra

Cons:

• Hard to find
! No systematic way to compute a CP decomposition

• Di�cult tensor sets:

Mr =
�
X 2 Rn1⇥...⇥nd | CP-rank(X) = r

 

and
Mr =

�
X 2 Rn1⇥...⇥nd | CP-rank(X)  r

 

are not closed.
! Not easy to optimize on.
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Tucker Decomposition – matrices

Recall the rank characterization:

“ r is the smallest number, such that there exist r-dimensional subspaces
V ✓ Rm and U ✓ Rn, such that A is an element of the induced tensor
space V ⌦ U ✓ Rm⇥n ”

What does this mean?
Let {ui} and {vi} be bases of U and V , respectively. Then

A =
rX

i=1

�iui ⌦ v̄i =
rX

i=1

�iuiv
⇤
i = U⌃V⇤

In the matrix case:

V = Im(A) and U = Rm/ker(A)

! their dimension always coincide!



4/19

Tucker Decomposition – matrices

Recall the rank characterization:

“ r is the smallest number, such that there exist r-dimensional subspaces
V ✓ Rm and U ✓ Rn, such that A is an element of the induced tensor
space V ⌦ U ✓ Rm⇥n ”

What does this mean?
Let {ui} and {vi} be bases of U and V , respectively.

Then

A =
rX

i=1

�iui ⌦ v̄i =
rX

i=1

�iuiv
⇤
i = U⌃V⇤

In the matrix case:

V = Im(A) and U = Rm/ker(A)

! their dimension always coincide!



4/19

Tucker Decomposition – matrices

Recall the rank characterization:

“ r is the smallest number, such that there exist r-dimensional subspaces
V ✓ Rm and U ✓ Rn, such that A is an element of the induced tensor
space V ⌦ U ✓ Rm⇥n ”

What does this mean?
Let {ui} and {vi} be bases of U and V , respectively. Then

A =
rX

i=1

�iui ⌦ v̄i

=
rX

i=1

�iuiv
⇤
i = U⌃V⇤

In the matrix case:

V = Im(A) and U = Rm/ker(A)

! their dimension always coincide!



4/19

Tucker Decomposition – matrices

Recall the rank characterization:

“ r is the smallest number, such that there exist r-dimensional subspaces
V ✓ Rm and U ✓ Rn, such that A is an element of the induced tensor
space V ⌦ U ✓ Rm⇥n ”

What does this mean?
Let {ui} and {vi} be bases of U and V , respectively. Then

A =
rX

i=1

�iui ⌦ v̄i =
rX

i=1

�iuiv
⇤
i = U⌃V⇤

In the matrix case:

V = Im(A) and U = Rm/ker(A)

! their dimension always coincide!



5/19

Tucker Decomposition – matrices



6/19

Tucker Decomposition – Tensors

How do we generalize this to tensors A 2 Rn1⇥...⇥nd?

• Find minimal subspaces s.t. A is an element of the induced tensor
space

• The dimensions of these subspaces may not be equal

Let {Uk}
d
k=1 be a collection of subsets with Uk ✓ Rnk .

For each subspace Uk we have an orthonormal basis1 {uk,i}
rk
i=1

A tensor A 2
Nd

k=1 Uk can then be expressed as

A =
r1X

i1=1

· · ·

rdX

id=1

C[i1, ..., id] · u1,i1 ⌦ u2,i2 ⌦ · · ·⌦ ud,i1

) C 2 Rr1⇥...⇥rd , called the core tensor

1dim(Uk) = rk
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Tucker Decomposition – Tensors

We may interpret

Uk = [uk,1|...|uk,rk ]
>
2 Rrk⇥nk

with elements

Uk[ik, j] = uk,ik [j] for 1  ik  rk and 1  j  nk

Then
A = C ⇤1 U1 ⇤2 U2... ⇤d Ud

where ⇤k is the kth mode contraction of C with Uk.
Elementwise:

A[j1, ..., jd] =
X

i1,...,id

C[i1, ..., id]U1[i1, j1] ·U2[i2, j2] · · ·Ud[id, jd]
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Tucker Decomposition – Tensors
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Tucker rank

Given a Tucker decomposition

A =
r1X

i1=1

· · ·

rdX

id=1

C[i1, ..., id] · u1,i1 ⌦ u2,i2 ⌦ · · ·⌦ ud,i1

We call the tuple
r = (r1, r2, ..., rd)

the rank of the associated decomposition.

The Tucker rank (T-rank) r is the minimal d-tuple such that there exists
a Tucker representation of A.

What does minimal mean?

Partial order of d-tuples:
On the set of d-tuples we define the partial order 4 as

(x1, ..., xd) = x 4 y = (y1, ..., yd) , xi  yi 8i
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Why Tucker?

• Looks a bit more complicated than CP decomposition
! How to find the subspaces?
! Rank definition aligns less with what we know from matrices!

• Can be computed constructively
! higher-order SVD (HOSVD)

• Tensors of bounded or fixed Tucker rank are much nicer
! Manifold structure ! Closed set
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high-order SVD

Algorithm:

Input: Target tensor A

Output: Core tensor C, basis matrices Uk 2 Rrk⇥nk for 1  k  d

for k = 1 : d
Calculate Ũk⌃kV⇤ = SVD(A(k))
[Recall notation: A(k) was the k-mode matricization]
Uk = Ũ>

k

Calculate C = A ⇤1 U>
1 ⇤2 U>

2 ... ⇤d U
>
d
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high-order SVD

The HOSVD yields Tucker decomposition of minimal rank:

Theorem
Given a tensor A 2 Rn1⇥...⇥nd , let C 2 Rr1⇥...⇥rd and Uk 2 Rrk⇥nk for
1  k  d be the core and basis matrices obtained with the HOSVD. Then

A = C ⇤1 U1 ⇤2 U2... ⇤d Ud

is a Tucker representation of A of minimal rank. The obtained
representation rank is also the Tucker rank of A, is related to the matrix
rank of the kth mode matricizations via

T-rank(A) =
⇣
rank(A(1)), rank(A(2)), ..., rank(A(d))

⌘
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Low T-rank approximation

Ee can adjust the HOSVD to get a T-rank approximation of A of rank r0

Input: Target tensor A

Output: Core tensor C, basis matrices Uk 2 Rrk⇥nk for 1  k  d

Set A0 = A

for k = 1 : d
Calculate rank r0k-SVD: Ũk⌃kV>

k = SVDr0k
(A(k)

k�1)

Set A(k)
k = ⌃kV>

k

Uk = Ũ>
k

C = A ⇤1 U>
1 ⇤2 U>

2 ... ⇤d U
>
d
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Quasi Best Approximation

There is no Eckart-Young theorem for low T-rank approximations!

Theorem:
Given a tensor A 2 Rn1⇥...⇥nd , let C 2 Rr1⇥...⇥rd and Uk 2 Rrk⇥nk for
1  k  d be the core and basis matrices obtained with the rank
r0-truncated HOSVD. These define a rank r0 Tucker approximation

A0 = C ⇤1 U1 ⇤2 U2... ⇤d Ud.

The tensor A0 is a quasi-best rank r0 approximation to A, i.e.,

kA�A0
kF 

p

d min
�
kA�YkF | Y 2 Rn1⇥...⇥nd , T-rank(Y) 4 r0
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The Tucker manifold

Theorem [Tucker manifold]:
The set

M
T
r =

�
X 2 Rn1⇥...⇥nd | T-rank(X) = r

 

admits a manifold structure2.

Proposition:
The set

M
T
4r =

�
X 2 Rn1⇥...⇥nd | T-rank(X) 4 r

 

is closed.

2Uschmajew & Vandereycken. Linear Algebra and its Applications (2013)
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Storage of Tucker decomposition

We store:

• the core tensor C 2 Rr1⇥...⇥rd

• the basis matrices Uk 2 Rrk⇥nk for 1  k  d

This scales as
O(rd + dnr)

where r = maxi(ri) and n = maxi(ni)

Note that for r ⌧ n this is a significant reduction over O(nd)



17/19

Accessing entries

One has to compute

A[j1, ..., jd] = (C ⇤1 U1 ⇤2 U2... ⇤d Ud) [j1, ..., jd]

=
r1X

i1=1

...
rdX

id=1

C[i1, ..., id]U1[i1, j1]U2[i2, j2]...Ud[id, jd]

set r = maxi(ri).

• Per for-loop we have O(r) operations

• For d nested for-loops this yields: O(rd)

• Recall: O(dr) for CP-decomposition
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Adding Tucker decompositions

Consider
X = C ⇤1 U1 ⇤2 U2... ⇤d Ud

and
X̄ = C̄ ⇤1 Ū1 ⇤2 Ū2... ⇤d Ūd

Define

Vk =


Uk

Ūk

�
2 R(rk+r̄k)⇥nk

and

D[i1, ..., id] =

8
><

>:

C[i1, ..., id] if i`  r` 8`

C̄[i1 � r1, ..., id � rd] if i` > r` 8`

0 else
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Adding Tucker decompositions

Then

(X+ X̄)[j1, ..., jd] =
r1X

i1=1

...
rdX

id=1

C[i1, ..., id]U1[i1, j1] · · ·Ud[id, jd]

+
r̄1X

i1=1

...
r̄dX

id=1

C̄[i1, ..., id]Ū1[i1, j1] · · · Ūd[id, jd]

=
r1+r̄1X

i1=1

...
rd+r̄dX

id=1

D[i1, ..., id]V1[i1, j1] · · ·Vd[id, jd]

Setting r = maxi(ri) and r̄ = maxi(r̄i)
The storage scales as

O

⇣
(r + r̄)d + dn(r + r̄)

⌘

and evaluating elements scales

O

⇣
(r + r̄)d

⌘
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Other operations

Operation Tucker CP Tensor
Had. Prod. O(ndrr̄ + rdr̄d) O(ndrr̄) O(nd)

Frob. In. Prod. O(ndrr̄ + drr̄d + rd) O(ndrr̄) O(nd)
Frob. Norm O(rd) O(ndr2) O(nd)
k-mode Prod. O(mnr +mr2 + rd+1) O((d+m)nr) O(ndm)


