Multi-linear Algebra
 - Tensor Train Decomposition Lecture 18

F. M. Faulstich

29/03/2024

Recall

Recall

- CP decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. Then

$$
\mathbf{A}=\sum_{p=1}^{r} \bigotimes_{i=1}^{d} \mathbf{v}_{i, p}
$$

Storage of CP format:
CP rank:

Recall

- CP decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. Then

$$
\mathbf{A}=\sum_{p=1}^{r} \bigotimes_{i=1}^{d} \mathbf{v}_{i, p}
$$

Storage of CP format: $\mathcal{O}(r n d)$
CP rank: minimal r s.t. we can express \mathbf{A} in the above format

Recall

- Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. Then

$$
\begin{aligned}
\mathbf{A} & =\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathbf{C}\left[i_{1}, \ldots, i_{d}\right] \cdot \mathbf{u}_{1, i_{1}} \otimes \mathbf{u}_{2, i_{2}} \otimes \cdots \otimes \mathbf{u}_{d, i_{1}} \\
& =\mathbf{C} *_{1} \mathbf{U}_{1} *_{2} \mathbf{U}_{2} \ldots *_{d} \mathbf{U}_{d}
\end{aligned}
$$

Recall

- Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. Then

Storage of Tucker format:
T-rank:

Recall

- Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. Then

Storage of Tucker format: $\mathcal{O}\left(r^{d}+r n d\right)$
T-rank: $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$
Advantage:

Recall

- Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. Then

Storage of Tucker format: $\mathcal{O}\left(r^{d}+r n d\right)$
Advantage:
1 Can be computed using HOSVD
2 Closed set of low-rank tensors
3 Manifold structure on the set of tensors with fixed rank
4 Can be sketched

Sketching Tucker

Compute a low-Tucker rank approximation using:

Sketching Tucker

Compute a low-Tucker rank approximation using:

- (T)HOSVD

Sketching Tucker

Compute a low-Tucker rank approximation using:

- (T)HOSVD
- STHOSVD

Sketching Tucker

Compute a low-Tucker rank approximation using:

- (T)HOSVD
- STHOSVD
- R-STHOSVD

Sketching Tucker

Compute a low-Tucker rank approximation using:

- (T)HOSVD
- STHOSVD
- R-STHOSVD
- sketched-STHOSVD

Sketching Tucker

Compute a low-Tucker rank approximation using:

- (T)HOSVD
- STHOSVD
- R-STHOSVD
- sketched-STHOSVD
- sub-sketch-STHOSVD

Sketching Tucker

Compute a low-Tucker rank approximation using:

- (T)HOSVD
- STHOSVD
- R-STHOSVD
- sketched-STHOSVD
- sub-sketch-STHOSVD

Tensor trains (Matrix produce states)

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)

Tensor trains (Matrix produce states)

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)
- TT format retains:
\rightarrow a generalized higher-order SVD
\rightarrow a closed set of low-rank tensors
\rightarrow a manifold structure on the set of tensors with fixed rank

Tensor trains (Matrix produce states)

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)
- TT format retains:
\rightarrow a generalized higher-order SVD
\rightarrow a closed set of low-rank tensors
\rightarrow a manifold structure on the set of tensors with fixed rank
Big benefit:
The computational complexity of the most common operations scales linearly in the order if all operands are given in TT representation

Tensor trains (Matrix produce states)

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)
- TT format retains:
\rightarrow a generalized higher-order SVD
\rightarrow a closed set of low-rank tensors
\rightarrow a manifold structure on the set of tensors with fixed rank
Big benefit:
The computational complexity of the most common operations scales linearly in the order if all operands are given in TT representation
\Rightarrow TT decomposition unifies advantages of CP and Tucker

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$
U_{1} \subseteq \mathbb{R}^{n_{1}}, U_{2} \subseteq \mathbb{R}^{n_{1} \times n_{2}}, \ldots, U_{d-1} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{d-1}}
$$

s.t. the final subspace contains the target tensor:

$$
U_{1} \subseteq \mathbb{R}^{n_{1}}
$$

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$
U_{1} \subseteq \mathbb{R}^{n_{1}}, U_{2} \subseteq \mathbb{R}^{n_{1} \times n_{2}}, \ldots, U_{d-1} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{d-1}}
$$

s.t. the final subspace contains the target tensor:

$$
\begin{aligned}
& U_{1} \subseteq \mathbb{R}^{n_{1}} \\
& U_{2} \subseteq U_{1} \otimes \mathbb{R}^{n_{2}} \subseteq \mathbb{R}^{n_{1} \times n_{2}}
\end{aligned}
$$

with $\mathbf{A} \in U_{1} \otimes \mathbb{R}^{n_{2} \times \ldots \times n_{d}}$ with $\mathbf{A} \in U_{2} \otimes \mathbb{R}^{n_{3} \times \ldots \times n_{d}}$

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$
U_{1} \subseteq \mathbb{R}^{n_{1}}, U_{2} \subseteq \mathbb{R}^{n_{1} \times n_{2}}, \ldots, U_{d-1} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{d-1}}
$$

s.t. the final subspace contains the target tensor:

$$
\begin{aligned}
& U_{1} \subseteq \mathbb{R}^{n_{1}} \\
& U_{2} \subseteq U_{1} \otimes \mathbb{R}^{n_{2}} \subseteq \mathbb{R}^{n_{1} \times n_{2}} \\
& U_{3} \subseteq U_{2} \otimes \mathbb{R}^{n_{3}} \subseteq \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}
\end{aligned}
$$

TT decomposition - A tail of subspaces!

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$
U_{1} \subseteq \mathbb{R}^{n_{1}}, U_{2} \subseteq \mathbb{R}^{n_{1} \times n_{2}}, \ldots, \quad U_{d-1} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{d-1}}
$$

s.t. the final subspace contains the target tensor:

$$
\begin{aligned}
& U_{1} \subseteq \mathbb{R}^{n_{1}} \\
& U_{2} \subseteq U_{1} \otimes \mathbb{R}^{n_{2}} \subseteq \mathbb{R}^{n_{1} \times n_{2}} \\
& U_{3} \subseteq U_{2} \otimes \mathbb{R}^{n_{3}} \subseteq \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}
\end{aligned}
$$

$$
U_{d-1} \subseteq U_{d-2} \otimes \mathbb{R}^{n_{d-1}} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{d-1}}
$$

with $\mathbf{A} \in U_{1} \otimes \mathbb{R}^{n_{2} \times \ldots \times n_{d}}$ with $\mathbf{A} \in U_{2} \otimes \mathbb{R}^{n_{3} \times \ldots \times n_{d}}$ with $\mathbf{A} \in U_{3} \otimes \mathbb{R}^{n_{4} \times \ldots \times n_{d}}$
with $\mathbf{A} \in U_{d-1} \otimes \mathbb{R}^{n_{d}}$

TT decomposition - A tail of subspaces!

- $\operatorname{dim}\left(U_{k}\right)=r_{k}$

TT decomposition - A tail of subspaces!

- $\operatorname{dim}\left(U_{k}\right)=r_{k}$
- $\left(\mathbf{V}_{k, 1}, \ldots, \mathbf{V}_{k, r_{k}}\right)$ is a basis of $U_{k} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$

TT decomposition - A tail of subspaces!

- $\operatorname{dim}\left(U_{k}\right)=r_{k}$
- $\left(\mathbf{V}_{k, 1}, \ldots, \mathbf{V}_{k, r_{k}}\right)$ is a basis of $U_{k} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$
- Note that $U_{k} \subseteq U_{k-1} \otimes \mathbb{R}^{n_{k}} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ ensures that

$$
\mathbf{V}_{k, j}=\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}
$$

for some $\mathbf{u}_{k, i, j} \in \mathbb{R}^{n_{k}}$.

TT decomposition - A tail of subspaces!

- $\operatorname{dim}\left(U_{k}\right)=r_{k}$
- $\left(\mathbf{V}_{k, 1}, \ldots, \mathbf{V}_{k, r_{k}}\right)$ is a basis of $U_{k} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$
- Note that $U_{k} \subseteq U_{k-1} \otimes \mathbb{R}^{n_{k}} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ ensures that

$$
\mathbf{V}_{k, j}=\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}
$$

for some $\mathbf{u}_{k, i, j} \in \mathbb{R}^{n_{k}}$.

- Writing the (orthogonal) basis as a tensor

$$
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right]=\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right]
$$

and defining

$$
\mathbf{U}_{k}[i, \ell, j]=\mathbf{u}_{k, i, j}[\ell]
$$

TT decomposition - A tail of subspaces!

- $\operatorname{dim}\left(U_{k}\right)=r_{k}$
- $\left(\mathbf{V}_{k, 1}, \ldots, \mathbf{V}_{k, r_{k}}\right)$ is a basis of $U_{k} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$
- Note that $U_{k} \subseteq U_{k-1} \otimes \mathbb{R}^{n_{k}} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ ensures that

$$
\mathbf{V}_{k, j}=\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}
$$

for some $\mathbf{u}_{k, i, j} \in \mathbb{R}^{n_{k}}$.

- Writing the (orthogonal) basis as a tensor

$$
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right]=\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right]
$$

and defining

$$
\mathbf{U}_{k}[i, \ell, j]=\mathbf{u}_{k, i, j}[\ell]
$$

with $\mathbf{W} \in \mathbb{R}^{n_{1} \times \ldots \times n_{k} \times r_{k}}$ and $\mathbf{U}_{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}$

TT decomposition - A tail of subspaces!

Then

$$
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right]=\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right]
$$

TT decomposition - A tail of subspaces!

Then

$$
\begin{aligned}
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right] & =\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right] \\
& =\left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}\right)\left[i_{1}, \ldots, i_{k}\right]
\end{aligned}
$$

TT decomposition - A tail of subspaces!

Then

$$
\begin{aligned}
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right] & =\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right] \\
& =\left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}\right)\left[i_{1}, \ldots, i_{k}\right] \\
& =\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i}\left[i_{1}, \ldots, i_{k-1}\right] \mathbf{u}_{k, i, j}\left[i_{k}\right]
\end{aligned}
$$

TT decomposition - A tail of subspaces!

Then

$$
\begin{aligned}
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right] & =\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right] \\
& =\left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}\right)\left[i_{1}, \ldots, i_{k}\right] \\
& =\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i}\left[i_{1}, \ldots, i_{k-1}\right] \mathbf{u}_{k, i, j}\left[i_{k}\right] \\
& =\sum_{i=1}^{r_{k-1}} \mathbf{W}_{k-1}\left[i_{1}, \ldots, i_{k-1}, i\right] \mathbf{U}_{k}\left[i, i_{k}, j\right]
\end{aligned}
$$

TT decomposition - A tail of subspaces!

Then

$$
\begin{aligned}
\mathbf{W}_{k}\left[i_{1}, \ldots, i_{k}, j\right] & =\mathbf{V}_{k, j}\left[i_{1}, \ldots, i_{k}\right] \\
& =\left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i} \otimes \mathbf{u}_{k, i, j}\right)\left[i_{1}, \ldots, i_{k}\right] \\
& =\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1, i}\left[i_{1}, \ldots, i_{k-1}\right] \mathbf{u}_{k, i, j}\left[i_{k}\right] \\
& =\sum_{i=1}^{r_{k-1}} \mathbf{W}_{k-1}\left[i_{1}, \ldots, i_{k-1}, i\right] \mathbf{U}_{k}\left[i, i_{k}, j\right] \\
& =\left(\mathbf{W}_{k-1} *_{(k),(1)} \mathbf{U}_{k}\right)\left[i_{1}, \ldots, i_{k-1}, i_{k}, j\right]
\end{aligned}
$$

TT decomposition - A tail of subspaces!

So, recursively applied, this yields

$$
\mathbf{A}=\mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_{d}
$$

TT decomposition - A tail of subspaces!

So, recursively applied, this yields

$$
\begin{aligned}
\mathbf{A} & =\mathbf{W}_{d-1} *(d),(1) \\
& \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}\right) *_{(d),(1)} \mathbf{U}_{d}
\end{aligned}
$$

TT decomposition - A tail of subspaces!

So, recursively applied, this yields

$$
\begin{aligned}
\mathbf{A} & =\mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}\right) *_{(d),(1)} \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-3} *_{(d-2),(1)} \mathbf{U}_{d-2}\right) *_{(d-1),(1)} \mathbf{U}_{d-1} *_{(3),(1)} \mathbf{U}_{d}
\end{aligned}
$$

TT decomposition - A tail of subspaces!

So, recursively applied, this yields

$$
\begin{aligned}
\mathbf{A} & =\mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}\right) *_{(d),(1)} \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-3} *_{(d-2),(1)} \mathbf{U}_{d-2}\right) *_{(d-1),(1)} \mathbf{U}_{d-1} *_{(3),(1)} \mathbf{U}_{d} \\
& \vdots \\
& =\mathbf{U}_{1} *_{(3),(1)} \mathbf{U}_{2} *_{(3),(1)} \ldots *_{(3),(1)} \mathbf{U}_{d}
\end{aligned}
$$

TT decomposition - A tail of subspaces!

So, recursively applied, this yields

$$
\begin{aligned}
\mathbf{A} & =\mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}\right) *_{(d),(1)} \mathbf{U}_{d} \\
& =\left(\mathbf{W}_{d-3} *_{(d-2),(1)} \mathbf{U}_{d-2}\right) *_{(d-1),(1)} \mathbf{U}_{d-1} *_{(3),(1)} \mathbf{U}_{d} \\
& \vdots \\
& =\mathbf{U}_{1} *_{(3),(1)} \mathbf{U}_{2} *_{(3),(1)} \cdots *_{(3),(1)} \mathbf{U}_{d}
\end{aligned}
$$

Or as a diagram

TT-SVD (another variant of HOSVD)

$$
\mathbf{A}_{n_{1}, \ldots, n_{d}}
$$

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \cdots n_{d}}
\end{aligned}
$$

$$
\text { reshape to } n_{1} \times \prod_{j \neq i} n_{j}
$$

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \cdots n_{d}}^{n_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{T}\right)_{n_{2} \ldots n_{d}}^{r_{1}}
\end{aligned}
$$

SVD

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \cdots n_{d}}^{n_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{2} \cdots n_{d}}^{r_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{1} \cdot n_{2}}
\end{aligned}
$$

reshape to $n_{1} \times \prod_{j \neq i} n_{j}$

SVD
reshape of $\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)$

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \ldots n_{d}}^{n_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{1} \ldots n_{d}}^{r_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{3} \ldots n_{2}}^{r_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{2}}
\end{aligned}
$$

$$
\text { reshape to } n_{1} \times \prod_{j \neq i} n_{j}
$$

SVD
reshape of $\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)$
SVD of $\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)$

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \cdots n_{d}}^{n_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{2} \ldots n_{d}}^{r_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{1} \cdot n_{2}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{2}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{T}\right)_{n_{4} \cdot n_{d}}^{r_{2} \cdot n_{3}}
\end{aligned}
$$

SVD
reshape of $\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)$
SVD of $\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)$
reshape of $\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)$

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \cdots n_{d}}^{n_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{2} \ldots n_{d}}^{r_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{1} \cdot n_{2}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{2}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot \boldsymbol{n}_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{T}\right)_{n_{4} \cdot n_{d}}^{r_{2} \cdot n_{3}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\mathbf{U}_{3}\right)_{r_{3}}^{r_{2} \cdot n_{3}}\left(\boldsymbol{\Sigma}_{3} \mathbf{V}_{3}^{T}\right)_{n_{4} \cdots n_{d}}^{r_{3}} \\
& \text { reshape to } n_{1} \times \prod_{j \neq i} n_{j} \\
& \text { SVD } \\
& \text { reshape of }\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right) \\
& \text { SVD of }\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right) \\
& \text { reshape of }\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right) \\
& \text { SVD of }\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)
\end{aligned}
$$

TT-SVD (another variant of HOSVD)

$$
\begin{aligned}
& \mathbf{A}_{n_{1}, \ldots, n_{d}} \\
& =\mathbf{A}_{n_{2} \cdots n_{d}}^{n_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{2} \cdots n_{d}}^{r_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{1} \cdot \mathbf{U}_{1}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)_{n_{3} \cdots n_{d}}^{r_{2}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{\top}\right)_{n_{4} \cdots n_{d}}^{r_{2} \cdot n_{3}} \\
& =\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}\left(\mathbf{U}_{2}\right)_{r_{2}}^{r_{1} \cdot n_{2}}\left(\mathbf{U}_{3}\right)_{r_{3}}^{r_{2} \cdot n_{3}}\left(\mathbf{\Sigma}_{3} \mathbf{V}_{3}^{\top}\right)_{n_{4} \cdots n_{d}}^{r_{3}} \\
& =\underbrace{\left(\mathbf{U}_{1}\right)_{r_{1}}^{n_{1}}}_{\mathbf{U}_{1}\left[n_{d}\right]} \cdots \underbrace{\left(\mathbf{U}_{d-1}\right)_{r_{d-1}}^{r_{d-2} \cdot n_{d-1}}}_{=: \mathbf{U}_{d-1}\left[n_{d-1}\right]} \underbrace{\left(\mathbf{\Sigma}_{d-1} \mathbf{V}_{d-1}^{\top}\right)_{n_{d}}^{r_{d-1}}}_{=: \mathbf{U}_{d}\left[n_{d}\right]}
\end{aligned}
$$

TT-SVD (diagrammatically)

$$
-\overbrace{n_{1}}^{\mathcal{X}_{0} \overbrace{n_{4}} n_{n_{3}}}
$$

TT-SVD (diagrammatically)

$n_{1} \boldsymbol{X}_{0}^{(1)}{ }_{n} n_{3} n_{4}$

TT-SVD (diagrammatically)

$n_{1} \boldsymbol{X}_{0}^{(1)}{ }_{n} n_{3} n_{4}$

TT-SVD (diagrammatically)

TT Pseudo-code

We introduce the notation

$$
\mathbf{A}^{\langle k\rangle}=\operatorname{MAT}_{(1, \ldots, k)}(\mathbf{A})
$$

for the matricization that flattens the first k and the last $d-k$ modes
Algorithm:
Input: Target tensor A, target $\operatorname{rank}\left(r_{1}, \ldots, r_{d}\right)$ Output: Component tensors $\mathbf{U}_{i} \in \mathbb{R}^{r_{i-1} \times n_{i} \times r_{i}}$

$$
\begin{aligned}
& \mathbf{A}_{1}=\mathbf{A}^{\langle 1\rangle} \\
& \tilde{\mathbf{U}}_{1}, \boldsymbol{\Sigma}_{1}, \mathbf{V}_{1}=\operatorname{SVD}\left(\mathbf{A}_{1}, r_{1}\right) \\
& \mathbf{U}_{1}=\operatorname{unfild}\left(\tilde{\mathbf{U}}_{1}\right) \\
& \mathcal{V}_{1}=\operatorname{unfold}\left(\boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{\top}\right) \\
& A_{2}=\mathcal{V}_{1}^{\langle 2\rangle} \\
& \text { for } k=2: d-1 \\
& \quad \tilde{\mathbf{U}}_{k}, \boldsymbol{\Sigma}_{k}, \mathbf{V}_{k}=\operatorname{SVD}\left(\mathbf{A}_{k}, r_{k}\right) \\
& \quad \mathbf{U}_{k}=\operatorname{unfold}\left(\tilde{\mathbf{U}}_{k}\right) \\
& \quad \mathcal{V}_{k}=\operatorname{unfold}\left(\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{\top}\right) \\
& \quad A_{k+1}=\mathcal{V}_{k}^{\langle 2\rangle} \\
& \tilde{\mathbf{U}}_{d}=\mathcal{V}_{d-1} \\
& \mathbf{U}_{d}=\operatorname{unfold}^{\left(\tilde{\mathbf{U}}_{d}\right)}
\end{aligned}
$$

TT decomposition

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. We call a factorization

$$
\mathbf{A}\left[i_{1}, \ldots, i_{d}\right]=\mathbf{U}_{1}\left[i_{1}\right] \mathbf{U}_{2}\left[i_{2}\right] \cdots \mathbf{U}_{d}\left[i_{d}\right]
$$

a TT representation of \mathbf{A}.
Note: This reveals the alternative name Matrix-product-states

Storing in TT format scales as

TT decomposition

Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$. We call a factorization

$$
\mathbf{A}\left[i_{1}, \ldots, i_{d}\right]=\mathbf{U}_{1}\left[i_{1}\right] \mathbf{U}_{2}\left[i_{2}\right] \cdots \mathbf{U}_{d}\left[i_{d}\right]
$$

a TT representation of \mathbf{A}.
Note: This reveals the alternative name Matrix-product-states

Storing in TT format scales as

$$
\mathcal{O}\left(r^{2} d n\right)
$$

Accessing Entries

Let consider $\mathbf{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3} \times n_{4}}$. Then

$$
\mathbf{A}\left[i_{1}, \ldots, i_{4}\right]=\sum_{k_{3}=1}^{r_{3}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{1}=1}^{r_{1}} \mathbf{U}_{1}\left[1, i_{1}, k_{1}\right] \mathbf{U}_{2}\left[k_{1}, i_{2}, k_{2}\right] \mathbf{U}_{3}\left[k_{2}, i_{3}, k_{3}\right] \mathbf{U}_{4}\left[k_{3}, i_{4}, 1\right]
$$

Accessing Entries

Let consider $\mathbf{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3} \times n_{4}}$. Then

$$
\begin{aligned}
& \mathbf{A}\left[i_{1}, \ldots, i_{4}\right]=\sum_{k_{3}=1}^{r_{3}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{1}=1}^{r_{1}} \mathbf{U}_{1}\left[1, i_{1}, k_{1}\right] \mathbf{U}_{2}\left[k_{1}, i_{2}, k_{2}\right] \mathbf{U}_{3}\left[k_{2}, i_{3}, k_{3}\right] \mathbf{U}_{4}\left[k_{3}, i_{4}, 1\right] \\
&=\sum_{k_{3}=1}^{r_{3}} \sum_{k_{2}=1}^{r_{2}} \underbrace{\left(\sum_{k_{1}=1}^{r_{1}} \mathbf{U}_{1}\left[1, i_{1}, k_{1}\right] \mathbf{U}_{2}\left[k_{1}, i_{2}, k_{2}\right]\right.}_{\substack{\in \mathcal{O}(r) \text { for fixed } i_{1}, i_{2}, k_{2} \\
\in \mathcal{O}\left(r^{2}\right) \text { since } k_{2} \in \llbracket r_{2} \rrbracket}}) \\
& \mathbf{U}_{3}\left[k_{2}, i_{3}, k_{3}\right] \mathbf{U}_{4}\left[k_{3}, i_{4}, 1\right]
\end{aligned}
$$

Accessing Entries

Let consider $\mathbf{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3} \times n_{4}}$. Then

$$
\begin{aligned}
\mathbf{A}\left[i_{1}, \ldots, i_{4}\right] & =\sum_{k_{3}=1}^{r_{3}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{1}=1}^{r_{1}} \mathbf{U}_{1}\left[1, i_{1}, k_{1}\right] \mathbf{U}_{2}\left[k_{1}, i_{2}, k_{2}\right] \mathbf{U}_{3}\left[k_{2}, i_{3}, k_{3}\right] \mathbf{U}_{4}\left[k_{3}, i_{4}, 1\right] \\
& =\sum_{k_{3}=1}^{r_{3}} \sum_{k_{2}=1}^{\sum_{2}} \underbrace{\left(\sum_{k_{1}=1}^{r_{1}} \mathbf{U}_{1}\left[1, i_{1}, k_{1}\right] \mathbf{U}_{2}\left[k_{1}, i_{2}, k_{2}\right]\right)}_{\substack{\left.\in \mathcal{O}(r) \text { for fixed } i_{1}, i_{2}, k_{2} \\
\in \mathcal{O}\left(r^{2}\right) \text { since } k_{2} \in \llbracket r_{2}\right]}} \mathbf{U}_{3}\left[k_{2}, i_{3}, k_{3}\right] \mathbf{U}_{4}\left[k_{3}, i_{4}, 1\right] \\
& =\sum_{k_{3}=1}^{r_{3}} \underbrace{\left(\sum_{k_{2}=1}^{r_{2}} \mathbf{W}_{1}\left[1, i_{1}, i_{2}, k_{2}\right] \mathbf{U}_{3}\left[k_{2}, i_{3}, k_{3}\right]\right)}_{\in \mathcal{O}\left(r^{2}\right)} \mathbf{U}_{4}\left[k_{3}, i_{4}, 1\right] \\
& =\ldots
\end{aligned}
$$

Generalizing this idea leads to the computational scaling $\mathcal{O}\left(d r^{2}\right)$

Adding TT decomposition

$$
\begin{aligned}
& (\mathbf{A}+\overline{\mathbf{A}})\left[i_{1}, \ldots, i_{d}\right] \\
& =\mathbf{U}_{1, i_{1}} \mathbf{U}_{2, i_{2}} \ldots \mathbf{U}_{d-1, i_{d-1}} \mathbf{U}_{d, i_{d}}+\overline{\mathbf{U}}_{1, i_{1}} \overline{\mathbf{U}}_{2, i_{2}} \ldots \overline{\mathbf{U}}_{d-1, i_{d-1}} \overline{\mathbf{U}}_{d, i_{d}} \\
& =\left(\begin{array}{ll}
\mathbf{U}_{1, i_{1}} & \overline{\mathbf{U}}_{1, i_{1}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{U}_{2, i_{2}} & \mathbf{0} \\
\mathbf{0} & \overline{\mathbf{U}}_{2, i_{2}}
\end{array}\right) \cdots\left(\begin{array}{cc}
\mathbf{U}_{d-1, i_{d-1}} & \mathbf{0} \\
\mathbf{0} & \overline{\mathbf{U}}_{d-1, i_{d-1}}
\end{array}\right)\binom{\mathbf{U}_{d, i_{d}}}{\overline{\mathbf{U}}_{d, i_{d}}} \\
& =\mathbf{W}_{1, i_{1}} \mathbf{W}_{2, i_{2}} \ldots \mathbf{W}_{d-1, i_{d-1}} \mathbf{W}_{d, i_{d}}
\end{aligned}
$$

Which is a valid TT representation of $\mathbf{A}+\overline{\mathbf{A}}$ of $\operatorname{rant} \mathbf{r}+\overline{\mathbf{r}}$. Thus the scaling is

$$
\mathcal{O}\left(d(r+\bar{r})^{2}\right)
$$

where $r=\max (\mathbf{r})$, and $\bar{r}=\max (\overline{\mathbf{r}})$

Other operations

Operation	TT	Tucker	CP
Had. Prod.	$\mathcal{O}\left(n d r^{2} \bar{r}^{2}\right)$	$\mathcal{O}\left(n d r \bar{r}+r^{d} \bar{r}^{d}\right)$	$\mathcal{O}(n d r \bar{r})$
Frob. In. Prod.	$\mathcal{O}\left(n d r^{3}\right)$	$\mathcal{O}\left(n d r \bar{r}+d r \bar{r}^{d}+r^{d}\right)$	$\mathcal{O}(n d r \bar{r})$
Frob. Norm	$\mathcal{O}\left(r^{2} n\right)$	$\mathcal{O}\left(r^{d}\right)$	$\mathcal{O}\left(n d r^{2}\right)$
k-mode Prod.	$\mathcal{O}\left(m n r^{2}\right)$	$\mathcal{O}\left(m n r+m r^{2}+r^{d+1}\right)$	$\mathcal{O}((d+m) n r)$

