Multi-linear Algebra – Tensor Train Decomposition – Lecture 18

F. M. Faulstich

29/03/2024

• CP decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. Then

Storage of CP format: CP rank: • CP decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. Then

$$\mathbf{A} = \sum_{p=1}^{r} \bigotimes_{i=1}^{d} \mathbf{v}_{i,p}$$

Storage of CP format: $\mathcal{O}(rnd)$ CP rank: minimal r s.t. we can express **A** in the above format • Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. Then

$$\mathbf{A} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{C}[i_1, ..., i_d] \cdot \mathbf{u}_{1,i_1} \otimes \mathbf{u}_{2,i_2} \otimes \cdots \otimes \mathbf{u}_{d,i_1}$$
$$= \mathbf{C} *_1 \mathbf{U}_1 *_2 \mathbf{U}_2 ... *_d \mathbf{U}_d$$

• Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. Then

Storage of Tucker format: T-rank:

• Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. Then

Storage of Tucker format: $\mathcal{O}(r^d + rnd)$ T-rank: $\mathbf{r} = (r_1, ..., r_d)$ Advantage:

• Tucker decomposition: Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. Then

Storage of Tucker format: $\mathcal{O}(r^d + rnd)$ Advantage:

- 1 Can be computed using HOSVD
- 2 Closed set of low-rank tensors
- 3 Manifold structure on the set of tensors with fixed rank
- 4 Can be sketched

Sketching Tucker

• (T)HOSVD

- (T)HOSVD
- STHOSVD

- (T)HOSVD
- STHOSVD
- R-STHOSVD

- (T)HOSVD
- STHOSVD
- R-STHOSVD
- sketched-STHOSVD

- (T)HOSVD
- STHOSVD
- R-STHOSVD
- sketched-STHOSVD
- sub-sketch-STHOSVD

- (T)HOSVD
- STHOSVD
- R-STHOSVD
- sketched-STHOSVD
- sub-sketch-STHOSVD

• TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)
- TT format retains:
 - \rightarrow a generalized higher-order SVD
 - \rightarrow a closed set of low-rank tensors
 - \rightarrow a manifold structure on the set of tensors with fixed rank

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)
- TT format retains:
 - \rightarrow a generalized higher-order SVD
 - \rightarrow a closed set of low-rank tensors
 - \rightarrow a manifold structure on the set of tensors with fixed rank

Big benefit:

The computational complexity of the most common operations scales linearly in the order if all operands are given in TT representation

- TT decomposition follows a subspace-based approach (similar to the Tucker decomposition)
- TT format retains:
 - \rightarrow a generalized higher-order SVD
 - \rightarrow a closed set of low-rank tensors
 - \rightarrow a manifold structure on the set of tensors with fixed rank

Big benefit:

The computational complexity of the most common operations scales linearly in the order if all operands are given in TT representation

 \Rightarrow TT decomposition unifies advantages of CP and Tucker

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor

- Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor
 - We seek to find minimal subspaces s.t. A can be represented in terms of these spaces

- Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor
 - We seek to find minimal subspaces s.t. A can be represented in terms of these spaces

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$U_1 \subseteq \mathbb{R}^{n_1}, \ U_2 \subseteq \mathbb{R}^{n_1 \times n_2}, \ \dots, \ U_{d-1} \subseteq \mathbb{R}^{n_1 \times \dots \times n_{d-1}}$$

s.t. the final subspace contains the target tensor:

$$U_1 \subseteq \mathbb{R}^{n_1}$$
 with $\mathbf{A} \in U_1 \otimes \mathbb{R}^{n_2 \times \ldots \times n_d}$

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$U_1 \subseteq \mathbb{R}^{n_1}, U_2 \subseteq \mathbb{R}^{n_1 \times n_2}, ..., U_{d-1} \subseteq \mathbb{R}^{n_1 \times ... \times n_{d-1}}$$

s.t. the final subspace contains the target tensor:

 $U_1 \subseteq \mathbb{R}^{n_1} \qquad \text{with } \mathbf{A} \in U_1 \otimes \mathbb{R}^{n_2 \times \dots \times n_d} \\ U_2 \subseteq U_1 \otimes \mathbb{R}^{n_2} \subseteq \mathbb{R}^{n_1 \times n_2} \qquad \text{with } \mathbf{A} \in U_2 \otimes \mathbb{R}^{n_3 \times \dots \times n_d}$

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$U_1 \subseteq \mathbb{R}^{n_1}, U_2 \subseteq \mathbb{R}^{n_1 \times n_2}, ..., U_{d-1} \subseteq \mathbb{R}^{n_1 \times ... \times n_{d-1}}$$

s.t. the final subspace contains the target tensor:

$U_1 \subseteq \mathbb{R}^{n_1}$	with $\mathbf{A} \in U_1 \otimes \mathbb{R}^{n_2 \times \ldots \times n_d}$
$U_2 \subseteq U_1 \otimes \mathbb{R}^{n_2} \subseteq \mathbb{R}^{n_1 \times n_2}$	with $\mathbf{A} \in U_2 \otimes \mathbb{R}^{n_3 \times \ldots \times n_d}$
$U_3 \subseteq U_2 \otimes \mathbb{R}^{n_3} \subseteq \mathbb{R}^{n_1 \times n_2 \times n_3}$	with $\mathbf{A} \in U_3 \otimes \mathbb{R}^{n_4 \times \ldots \times n_d}$

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$ be our target tensor

- We seek to find minimal subspaces s.t. A can be represented in terms of these spaces
- For Tucker: these subspaces corresponded to individual modes
- For TT: find a hierarchy of nested subspaces

$$U_1 \subseteq \mathbb{R}^{n_1}, U_2 \subseteq \mathbb{R}^{n_1 \times n_2}, ..., U_{d-1} \subseteq \mathbb{R}^{n_1 \times ... \times n_{d-1}}$$

s.t. the final subspace contains the target tensor:

$$U_{1} \subseteq \mathbb{R}^{n_{1}} \qquad \text{with } \mathbf{A} \in U_{1} \otimes \mathbb{R}^{n_{2} \times \ldots \times n_{d}}$$
$$U_{2} \subseteq U_{1} \otimes \mathbb{R}^{n_{2}} \subseteq \mathbb{R}^{n_{1} \times n_{2}} \qquad \text{with } \mathbf{A} \in U_{2} \otimes \mathbb{R}^{n_{3} \times \ldots \times n_{d}}$$
$$U_{3} \subseteq U_{2} \otimes \mathbb{R}^{n_{3}} \subseteq \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} \qquad \text{with } \mathbf{A} \in U_{3} \otimes \mathbb{R}^{n_{4} \times \ldots \times n_{d}}$$
$$\vdots \qquad \vdots$$
$$U_{d-1} \subseteq U_{d-2} \otimes \mathbb{R}^{n_{d-1}} \subseteq \mathbb{R}^{n_{1} \times \ldots \times n_{d-1}} \qquad \text{with } \mathbf{A} \in U_{d-1} \otimes \mathbb{R}^{n_{d}}$$

• $\dim(U_k) = r_k$

- $\dim(U_k) = r_k$
- $(\mathbf{V}_{k,1},...,\mathbf{V}_{k,r_k})$ is a basis of $U_k \subseteq \mathbb{R}^{n_1 \times ... \times n_k}$

- $\dim(U_k) = r_k$
- $(\mathbf{V}_{k,1},...,\mathbf{V}_{k,r_k})$ is a basis of $U_k \subseteq \mathbb{R}^{n_1 \times ... \times n_k}$
- Note that $U_k \subseteq U_{k-1} \otimes \mathbb{R}^{n_k} \subseteq \mathbb{R}^{n_1 \times \ldots \times n_k}$ ensures that

$$\mathbf{V}_{k,j} = \sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}$$

for some $\mathbf{u}_{k,i,j} \in \mathbb{R}^{n_k}$.

- $\dim(U_k) = r_k$
- $(\mathbf{V}_{k,1},...,\mathbf{V}_{k,r_k})$ is a basis of $U_k \subseteq \mathbb{R}^{n_1 \times ... \times n_k}$
- Note that $U_k \subseteq U_{k-1} \otimes \mathbb{R}^{n_k} \subseteq \mathbb{R}^{n_1 \times \ldots \times n_k}$ ensures that

$$\mathbf{V}_{k,j} = \sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}$$

for some $\mathbf{u}_{k,i,j} \in \mathbb{R}^{n_k}$.

• Writing the (orthogonal) basis as a tensor

$$\mathbf{W}_{k}[i_{1},...,i_{k},j] = \mathbf{V}_{k,j}[i_{1},...,i_{k}]$$

and defining

$$\mathbf{U}_k[i,\ell,j] = \mathbf{u}_{k,i,j}[\ell]$$

- $\dim(U_k) = r_k$
- $(\mathbf{V}_{k,1},...,\mathbf{V}_{k,r_k})$ is a basis of $U_k \subseteq \mathbb{R}^{n_1 \times ... \times n_k}$
- Note that $U_k \subseteq U_{k-1} \otimes \mathbb{R}^{n_k} \subseteq \mathbb{R}^{n_1 \times \ldots \times n_k}$ ensures that

$$\mathbf{V}_{k,j} = \sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}$$

for some $\mathbf{u}_{k,i,j} \in \mathbb{R}^{n_k}$.

• Writing the (orthogonal) basis as a tensor

$$\mathbf{W}_{k}[i_{1},...,i_{k},j] = \mathbf{V}_{k,j}[i_{1},...,i_{k}]$$

and defining

$$\mathbf{U}_k[i,\ell,j] = \mathbf{u}_{k,i,j}[\ell]$$

with $\mathbf{W} \in \mathbb{R}^{n_1 \times \ldots \times n_k \times r_k}$ and $\mathbf{U}_k \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$

$$\mathbf{W}_{k}[i_{1},...,i_{k},j] = \mathbf{V}_{k,j}[i_{1},...,i_{k}]$$

$$egin{aligned} \mathbf{W}_k[i_1,...,i_k,j] &= \mathbf{V}_{k,j}[i_1,...,i_k] \ &= \left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}
ight)[i_1,...,i_k] \end{aligned}$$

$$\begin{split} \mathbf{W}_{k}[i_{1},...,i_{k},j] &= \mathbf{V}_{k,j}[i_{1},...,i_{k}] \\ &= \left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}\right) [i_{1},...,i_{k}] \\ &= \sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i}[i_{1},...,i_{k-1}] \mathbf{u}_{k,i,j}[i_{k}] \end{split}$$

$$\begin{split} \mathbf{W}_{k}[i_{1},...,i_{k},j] &= \mathbf{V}_{k,j}[i_{1},...,i_{k}] \\ &= \left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}\right) [i_{1},...,i_{k}] \\ &= \sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i}[i_{1},...,i_{k-1}] \mathbf{u}_{k,i,j}[i_{k}] \\ &= \sum_{i=1}^{r_{k-1}} \mathbf{W}_{k-1}[i_{1},...,i_{k-1},i] \mathbf{U}_{k}[i,i_{k},j] \end{split}$$

$$\begin{aligned} \mathbf{W}_{k}[i_{1},...,i_{k},j] &= \mathbf{V}_{k,j}[i_{1},...,i_{k}] \\ &= \left(\sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i} \otimes \mathbf{u}_{k,i,j}\right) [i_{1},...,i_{k}] \\ &= \sum_{i=1}^{r_{k-1}} \mathbf{V}_{k-1,i}[i_{1},...,i_{k-1}] \mathbf{u}_{k,i,j}[i_{k}] \\ &= \sum_{i=1}^{r_{k-1}} \mathbf{W}_{k-1}[i_{1},...,i_{k-1},i] \mathbf{U}_{k}[i,i_{k},j] \\ &= \left(\mathbf{W}_{k-1}*_{(k),(1)} \mathbf{U}_{k}\right) [i_{1},...,i_{k-1},i_{k},j] \end{aligned}$$

So, recursively applied, this yields

 $\mathbf{A} = \mathbf{W}_{d-1} \ast_{(d),(1)} \mathbf{U}_d$

So, recursively applied, this yields

$$\begin{split} \mathbf{A} &= \mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}) *_{(d),(1)} \mathbf{U}_d \end{split}$$

So, recursively applied, this yields

$$\begin{aligned} \mathbf{A} &= \mathbf{W}_{d-1} \ast_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-2} \ast_{(d-1),(1)} \mathbf{U}_{d-1}) \ast_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-3} \ast_{(d-2),(1)} \mathbf{U}_{d-2}) \ast_{(d-1),(1)} \mathbf{U}_{d-1} \ast_{(3),(1)} \mathbf{U}_d \end{aligned}$$

So, recursively applied, this yields

$$\begin{aligned} \mathbf{A} &= \mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}) *_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-3} *_{(d-2),(1)} \mathbf{U}_{d-2}) *_{(d-1),(1)} \mathbf{U}_{d-1} *_{(3),(1)} \mathbf{U}_d \\ &\vdots \\ &= \mathbf{U}_1 *_{(3),(1)} \mathbf{U}_2 *_{(3),(1)} \cdots *_{(3),(1)} \mathbf{U}_d \end{aligned}$$

So, recursively applied, this yields

$$\begin{aligned} \mathbf{A} &= \mathbf{W}_{d-1} *_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-2} *_{(d-1),(1)} \mathbf{U}_{d-1}) *_{(d),(1)} \mathbf{U}_d \\ &= (\mathbf{W}_{d-3} *_{(d-2),(1)} \mathbf{U}_{d-2}) *_{(d-1),(1)} \mathbf{U}_{d-1} *_{(3),(1)} \mathbf{U}_d \\ &\vdots \\ &= \mathbf{U}_1 *_{(3),(1)} \mathbf{U}_2 *_{(3),(1)} \cdots *_{(3),(1)} \mathbf{U}_d \end{aligned}$$

Or as a diagram

 $\mathbf{A}_{n_1,\ldots,n_d}$

$$\mathbf{A}_{n_1,\ldots,n_d}$$

 $=\mathbf{A}_{n_{2}\cdots n_{d}}^{n_{1}}$

reshape to $n_1 \times \prod_{j \neq i} n_j$

 $\mathbf{A}_{n_1,\ldots,n_d}$

$$=\mathbf{A}_{n_{2}\cdots n_{d}}^{n_{1}}$$

 $= (\mathbf{U}_1)_{r_1}^{n_1} (\boldsymbol{\Sigma}_1 \mathbf{V}_1^\top)_{n_2 \cdots n_d}^{r_1}$

reshape to $n_1 \times \prod_{j \neq i} n_j$ SVD

 $\mathbf{A}_{n_1,\dots,n_d} = \mathbf{A}_{n_2\dots n_d}^{n_1}$

 $= (\mathbf{U}_1)_{r_1}^{n_1} (\boldsymbol{\Sigma}_1 \mathbf{V}_1^\top)_{n_2 \cdots n_d}^{r_1}$ $= (\mathbf{U}_1)_{r_1}^{n_1} (\boldsymbol{\Sigma}_1 \mathbf{V}_1^\top)_{n_3 \cdots n_d}^{r_1 \cdot n_2}$ reshape to $n_1 \times \prod_{j \neq i} n_j$ SVD reshape of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$

$$\mathbf{A}_{n_1,\ldots,n_d}$$

$$=\mathbf{A}_{n_{2}\cdots n_{d}}^{n_{1}}$$

$$= (\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{\top})_{n_{2}\cdots n_{d}}^{r_{1}}$$

= $(\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{\top})_{n_{3}\cdots n_{d}}^{r_{1}\cdot n_{2}}$
= $(\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{U}_{2})_{r_{2}}^{r_{1}\cdot n_{2}} (\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{\top})_{n_{3}\cdots n_{d}}^{r_{2}}$

reshape to $n_1 \times \prod_{j \neq i} n_j$ SVD reshape of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ SVD of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$

$$\mathbf{A}_{n_1,\ldots,n_d}$$

 $\mathbf{n}_{n_2\cdots n_d}$

 $= (\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{\top})_{n_{2}\cdots n_{d}}^{r_{1}}$ $= (\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{\top})_{n_{3}\cdots n_{d}}^{r_{1}\cdot n_{2}}$ $= (\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{U}_{2})_{r_{2}}^{r_{1}\cdot n_{2}} (\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{\top})_{n_{3}\cdots n_{d}}^{r_{2}}$ $= (\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{U}_{2})_{r_{2}}^{r_{1}\cdot n_{2}} (\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{\top})_{n_{4}\cdots n_{d}}^{r_{2}\cdot n_{3}}$ reshape to $n_1 \times \prod_{j \neq i} n_j$ SVD reshape of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ SVD of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ reshape of $(\boldsymbol{\Sigma}_2 \mathbf{V}_2^{\top})$

$$\mathbf{A}_{n_1,\dots,n_d} = \mathbf{A}_{n_2\cdots n_d}^{n_1}$$

- $= (\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{\top})_{n_{2}\cdots n_{d}}^{r_{1}}$ = $(\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{\Sigma}_{1}\mathbf{V}_{1}^{\top})_{n_{3}\cdots n_{d}}^{r_{1}\cdot n_{2}}$ = $(\mathbf{U}_{1})_{r_{1}}^{n_{1}} (\mathbf{U}_{2})_{r_{2}}^{r_{1}\cdot n_{2}} (\mathbf{\Sigma}_{2}\mathbf{V}_{2}^{\top})_{n_{3}\cdots n_{d}}^{r_{2}}$
- $= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{U}_2)_{r_2}^{r_1 \cdot n_2} (\boldsymbol{\Sigma}_2 \mathbf{V}_2^{\top})_{n_4 \cdots n_d}^{r_2 \cdot n_3}$
- $= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{U}_2)_{r_2}^{r_1 \cdot n_2} (\mathbf{U}_3)_{r_3}^{r_2 \cdot n_3} (\boldsymbol{\Sigma}_3 \mathbf{V}_3^{\top})_{n_4 \cdots n_d}^{r_3}$

reshape to $n_1 \times \prod_{j \neq i} n_j$ SVD reshape of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ SVD of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ reshape of $(\boldsymbol{\Sigma}_2 \mathbf{V}_2^{\top})$ SVD of $(\boldsymbol{\Sigma}_2 \mathbf{V}_2^{\top})$

$$\begin{aligned} \mathbf{A}_{n_1,\dots,n_d} \\ &= \mathbf{A}_{n_2}^{n_1} \\ &= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{\Sigma}_1 \mathbf{V}_1^{\top})_{n_2\cdots n_d}^{r_1} \\ &= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{\Sigma}_1 \mathbf{V}_1^{\top})_{n_3\cdots n_d}^{r_1 \cdot n_2} \\ &= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{U}_2)_{r_2}^{r_1 \cdot n_2} (\mathbf{\Sigma}_2 \mathbf{V}_2^{\top})_{n_3\cdots n_d}^{r_2} \\ &= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{U}_2)_{r_2}^{r_1 \cdot n_2} (\mathbf{\Sigma}_2 \mathbf{V}_2^{\top})_{n_4\cdots n_d}^{r_2 \cdot n_3} \\ &= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{U}_2)_{r_2}^{r_1 \cdot n_2} (\mathbf{U}_3)_{r_3}^{r_2 \cdot n_3} (\mathbf{\Sigma}_3 \mathbf{V}_3^{\top})_{n_4\cdots n_d}^{r_4 \cdot \cdots n_d} \\ &= (\mathbf{U}_1)_{r_1}^{n_1} (\mathbf{U}_2)_{r_2}^{r_2 \cdot n_3} (\mathbf{U}_3)_{r_3}^{r_2 \cdot n_3} (\mathbf{\Sigma}_3 \mathbf{V}_3^{\top})_{n_4\cdots n_d}^{r_4 \cdot \cdots r_d} \\ &\vdots \end{aligned}$$

$$=\underbrace{(\mathbf{U}_1)_{r_1}^{n_1}\cdots(\mathbf{U}_{d-1})_{r_{d-1}}^{r_{d-2}\cdot n_{d-1}}}_{=:\mathbf{U}_{d-1}[n_{d-1}]}\underbrace{(\mathbf{\Sigma}_{d-1}\mathbf{V}_{d-1}^{\top})_{n_d}^{r_{d-1}}}_{=:\mathbf{U}_d[n_d]}$$

reshape to $n_1 \times \prod_{j \neq i} n_j$ SVD reshape of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ SVD of $(\boldsymbol{\Sigma}_1 \mathbf{V}_1^{\top})$ reshape of $(\boldsymbol{\Sigma}_2 \mathbf{V}_2^{\top})$ SVD of $(\boldsymbol{\Sigma}_2 \mathbf{V}_2^{\top})$

 n_2

TT Pseudo-code

We introduce the notation

$$\mathbf{A}^{\langle k \rangle} = \mathrm{MAT}_{(1,\dots,k)}(\mathbf{A})$$

for the matricization that flattens the first k and the last d - k modes

Algorithm:

Input: Target tensor **A**, target rank $(r_1, ..., r_d)$ Output: Component tensors $\mathbf{U}_i \in \mathbb{R}^{r_{i-1} \times n_i \times r_i}$ $\mathbf{A}_1 = \mathbf{A}^{\langle 1 \rangle}$ $\tilde{\mathbf{U}}_1, \ \boldsymbol{\Sigma}_1, \ \mathbf{V}_1 = \mathrm{SVD}(\mathbf{A}_1, r_1)$ $\mathbf{U}_1 = \text{unfild}(\tilde{\mathbf{U}}_1)$ special treatment for 1st mode $\mathcal{V}_1 = \text{unfold}(\boldsymbol{\Sigma}_1 \mathbf{V}_1^\top)$ $A_2 = \mathcal{V}_1^{\langle 2 \rangle}$ for k = 2: d - 1 $\tilde{\mathbf{U}}_k, \ \mathbf{\Sigma}_k, \ \mathbf{V}_k = \mathrm{SVD}(\mathbf{A}_k, r_k)$ $\mathbf{U}_k = \mathrm{unfold}(\tilde{\mathbf{U}}_k)$ $\mathcal{V}_k = \text{unfold}(\boldsymbol{\Sigma}_k \mathbf{V}_k^{\top})$ $A_{k+1} = \mathcal{V}_{h}^{\langle 2 \rangle}$ $\tilde{\mathbf{U}}_d = \mathcal{V}_{d-1}$ $\mathbf{U}_d = \text{unfold}(\tilde{\mathbf{U}}_d)$ special treatment for d^{th} mode

TT decomposition

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. We call a factorization

$$\mathbf{A}[i_1, \dots, i_d] = \mathbf{U}_1[i_1]\mathbf{U}_2[i_2]\cdots\mathbf{U}_d[i_d]$$

- a TT representation of **A**.
- Note: This reveals the alternative name Matrix-product-states
- Storing in TT format scales as

TT decomposition

Let $\mathbf{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$. We call a factorization

$$\mathbf{A}[i_1, \dots, i_d] = \mathbf{U}_1[i_1]\mathbf{U}_2[i_2]\cdots\mathbf{U}_d[i_d]$$

- a TT representation of **A**.
- Note: This reveals the alternative name Matrix-product-states
- Storing in TT format scales as

 $\mathcal{O}(r^2 dn)$

Accessing Entries

Let consider $\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times n_4}$. Then

$$\mathbf{A}[i_1, ..., i_4] = \sum_{k_3=1}^{r_3} \sum_{k_2=1}^{r_2} \sum_{k_1=1}^{r_1} \mathbf{U}_1[1, i_1, k_1] \mathbf{U}_2[k_1, i_2, k_2] \mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]$$

Accessing Entries

Let consider $\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times n_4}$. Then

$$\begin{split} \mathbf{A}[i_1, \dots, i_4] &= \sum_{k_3=1}^{r_3} \sum_{k_2=1}^{r_2} \sum_{k_1=1}^{r_1} \mathbf{U}_1[1, i_1, k_1] \mathbf{U}_2[k_1, i_2, k_2] \mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1] \\ &= \sum_{k_3=1}^{r_3} \sum_{k_2=1}^{r_2} \underbrace{\left(\sum_{k_1=1}^{r_1} \mathbf{U}_1[1, i_1, k_1] \mathbf{U}_2[k_1, i_2, k_2]\right)}_{\in \mathcal{O}(r) \text{ for fixed } i_1, i_2, k_2} \mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1] \\ &= \underbrace{\mathcal{O}(r^2) \text{ for fixed } i_1, i_2, k_2}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_2 \in [r_2]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{\in \mathcal{O}(r^2) \text{ since } k_3 \in [r_3]} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{E_3} \underbrace{\mathbf{U}_3[k_3, i_4, 1]}_{E_3} \underbrace{\mathbf{U}_3[k_4, i_4, 1]}$$

Accessing Entries

Let consider $\mathbf{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3 \times n_4}$. Then

$$\begin{split} \mathbf{A}[i_1, \dots, i_4] &= \sum_{k_3=1}^{r_3} \sum_{k_2=1}^{r_2} \sum_{k_1=1}^{r_1} \mathbf{U}_1[1, i_1, k_1] \mathbf{U}_2[k_1, i_2, k_2] \mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1] \\ &= \sum_{k_3=1}^{r_3} \sum_{k_2=1}^{r_2} \underbrace{\left(\sum_{k_1=1}^{r_1} \mathbf{U}_1[1, i_1, k_1] \mathbf{U}_2[k_1, i_2, k_2]\right)}_{\in \mathcal{O}(r) \text{ for fixed } i_1, i_2, k_2} \mathbf{U}_3[k_2, i_3, k_3] \mathbf{U}_4[k_3, i_4, 1] \\ &= \sum_{k_3=1}^{r_3} \underbrace{\left(\sum_{k_2=1}^{r_2} \mathbf{W}_1[1, i_1, i_2, k_2] \mathbf{U}_3[k_2, i_3, k_3]\right)}_{\in \mathcal{O}(r^2)} \mathbf{U}_4[k_3, i_4, 1] \\ &= \sum_{k_3=1}^{r_3} \underbrace{\left(\sum_{k_2=1}^{r_2} \mathbf{W}_1[1, i_1, i_2, k_2] \mathbf{U}_3[k_2, i_3, k_3]\right)}_{\in \mathcal{O}(r^2)} \mathbf{U}_4[k_3, i_4, 1] \end{split}$$

Generalizing this idea leads to the computational scaling $\mathcal{O}(dr^2)$

Adding TT decomposition

$$\begin{aligned} (\mathbf{A} + \bar{\mathbf{A}})[i_1, ..., i_d] \\ &= \mathbf{U}_{1,i_1} \mathbf{U}_{2,i_2} ... \mathbf{U}_{d-1,i_{d-1}} \mathbf{U}_{d,i_d} + \bar{\mathbf{U}}_{1,i_1} \bar{\mathbf{U}}_{2,i_2} ... \bar{\mathbf{U}}_{d-1,i_{d-1}} \bar{\mathbf{U}}_{d,i_d} \\ &= \begin{pmatrix} \mathbf{U}_{1,i_1} & \bar{\mathbf{U}}_{1,i_1} \end{pmatrix} \begin{pmatrix} \mathbf{U}_{2,i_2} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{U}}_{2,i_2} \end{pmatrix} \cdots \begin{pmatrix} \mathbf{U}_{d-1,i_{d-1}} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{U}}_{d-1,i_{d-1}} \end{pmatrix} \begin{pmatrix} \mathbf{U}_{d,i_d} \\ \bar{\mathbf{U}}_{d,i_d} \end{pmatrix} \\ &= \mathbf{W}_{1,i_1} \mathbf{W}_{2,i_2} ... \mathbf{W}_{d-1,i_{d-1}} \mathbf{W}_{d,i_d} \end{aligned}$$

Which is a valid TT representation of $\mathbf{A} + \bar{\mathbf{A}}$ of rant $\mathbf{r} + \bar{\mathbf{r}}$. Thus the scaling is

$$\mathcal{O}(d(r+\bar{r})^2)$$

where $r = \max(\mathbf{r})$, and $\bar{r} = \max(\bar{\mathbf{r}})$

Other operations

Operation	TT	Tucker	CP
Had. Prod.	$\mathcal{O}(ndr^2\bar{r}^2)$	$\mathcal{O}(ndrar{r}+r^dar{r}^d)$	$\mathcal{O}(ndrar{r})$
Frob. In. Prod.	$\mathcal{O}(ndr^3)$	$\mathcal{O}(ndr\bar{r} + dr\bar{r}^d + r^d)$	$\mathcal{O}(ndrar{r})$
Frob. Norm	$\mathcal{O}(r^2n)$	$\mathcal{O}(r^d)$	$\mathcal{O}(ndr^2)$
k-mode Prod.	$\mathcal{O}(mnr^2)$	$\mathcal{O}(mnr + mr^2 + r^{d+1})$	$\mathcal{O}((d+m)nr)$