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The SVD

e Recall the SVD of A € F™*" is given by

min(m,n)
A=USV* = —_—
1

1=

where U € F"™*™ V € F"*" are orthonormal, and X € F™*"™ ig
diagonal.

Columns of U are the left singular vectors

Columns of V are the right singular vectors

e The rank of A € F™*" is given by the number of non-zero singular
values



The SVD

e One construction: diagonalize

0 A
M- (3 o)

The eigenvalues come in pairs (o;, —0;).
If A € F™*" the first m entries in the eigenvectors are the left
singular vectors, and the last n entries are the right singular vectors.

e We can then compute the rank k matrix

k
Ak: E a,-uiv;-‘
=1

for k < min(m,n).



Eckart-Young-Mirsky

e The matrix A; is a rank k approximation to A.
How good of an approximation?

e EYM for Frobenius norm:
Let A € F™*" with rank(A) = r. For any 1 < k < r we have

A — AgllFr= ponf |A—=Bllr=\/o}, + ... + 07
rank(B)<k

e EYM for spectral norm:
Let A € F™*" with rank(A) = r. For any 1 < k < r we have

IA = Apll = inf A =B[ =o0kn

CcmXxn

rank(B)<k



The SVD — The good and the bad

e Galois — eigendecompositions of generic matrices can only be done
iteratively
(equivalent to polynomial factorization)

e Practically speaking, computing the SVD takes O(mnp) operations
where p = min(m,n)

e SVD algorithms are difficult to parallelize and tend to be slower than
forming other decompositions



The QR decomposition — Vanilla version

e The QR decomposition of A € F™*™ is given by
A =QR

where Q € F™*™ is orthonormal, and R € F™*" is upper triangular.

e Use classical Gram-Schmidt: Store the inner products and
normalization in R, and store the orthonormal vectors in Q.

e CGS can be unstable: Suppose that the first few columns are all
essentially parallel with small errors. CGS will try to construct
orthogonal vectors out of a set of essentially identical vectors!

Sadly, there are a number of applications in which this is the setup ...



The QR decomposition — Column-pivoted QR

e Instead of CGS, let’s try to write
AP =QR

where:

A e men

P € F"*" is a permutation matrix
Q € F™*™ orthonormal

R € F™*" upper triangular



The QR decomposition — CPQR algorithm

e Initialize Qo =[], Ro =[], Eo = A, p = min(m, n)
o fork=1:p
Jr = argmax{||Ex_1(:,0)| | £=1,...,n}
q=Ep_1(551)/[Er—1(:, 5l

r=q'E;
Qi = (Qp-1,9)
_ (Rg—1
R, = -
Ey=Ep 1 —qr
end for

b Q = Qp7 R = va P = (jh “'»jp)



Low rank via QR

After k steps of the previous algorithm, we have
A = QiR; + Eg

where A, E;, € F™*" Q; € F™** and Ry, € Fk*»
e The first term is of rank &, and the second term is the reminder.

e A reasonable stopping criterion would be
[Exllr <e

e We can use the partial CPQR to obtain a partial SVD
1) Compute an SVD of Ry = Uzv* (cheap since Ry, has k rows)
2) Set U = Q,U
= A=UXV*+E,



The interpolative decomposition

a.k.a. skeletonization

The ID of A € F"™*" is given by
A=CZ

where C € F™** consists of k columns of A and Z € FF*" ig a
“well-conditioned” matrix.

e Clearly, if A is sparse or non-negative then C will also be sparse or
non-negative.
(This is not true with the QR or SVD)

e The ID typically requires less memory than QR or SVD

e The indices of the columns tell us something about the datal
(Also physics preserving)



The interpolative decomposition

a.k.a. skeletonization

e There is also a row-based ID of A € F™*";
A =XR

where X € F™*k ig well-conditioned and the rows of R € FF*™ are a
subset of the rows of A.

e Finally, we do both:
A =XA,Z
where X € F™** and Z € FF*" are well-conditioned, and Ay € FF*k
is a submatrix of A.

e The latter can be formed by taking a row-ID of the column-ID or
vice versa.

e The choices of subsets of rows and columns are often referred to as
skeletons



How do we compute it?

e From CPQR we obtain a set of columns that effectively span the
column space. They are also, in a certain sense, pretty orthogonal to
each other.

e Write: AP = QS and set

where Qq € F™*k Qy € Fm*(n=k) S, € FF*k_ etc.



How do we compute it?

e Then

AP = (Q1S11, Q1812 + Q2S22)
= Qi(S11,S12) + Q2(0,S22)
= Q1S11(1,S7;'S12) + Q2(0,S2)
= Q1S11(1,T) + Q2(0,S22)
< A =Q1511(1, T)P* + Q2(0,Sy)P*
= Q1S11Z + Q2(0, So2)P”
=CZ+ QQ(O, SQQ)P*

e What bout Sl_ll? If A is at least rank k£ then Si; is invertible.
If it is not, then change k&



What about speed?

Randomized low-rank approximations

e At some point it is difficult to guarantee that the deterministic
columns we chose are guaranteed to be a well-conditioned basis for
the entire column space. This can be especially problematic when we
don’t know the rank!

e Idea (exactly rank k): random sketching.
Apply your matrix to a suitably-scaled random matrix. With
probability 1 it won’t ‘miss’ any of the columns.
e Example:
Consider G € R™* an i.i.d. Gaussian matrix.
Set Y = AG and A, = Y(YTA)
... How to calculate?



Two-stage low-rank approximation

e Given A € F™*" of rank k.

e Stage A: Sketch it!
Compute an approximate basis for the range of A, i.e., Q € F™*¢
orthonormal with & < /¢ < n s.t.

A~QQA
e Stage B: Classical factorization
Compute SVD of B = Q*A € F*™ (this is a much smaller matrix!)
B=UZV"
and define U = Qﬂ

e All accuracy loss and computational cost are now in Stage Al



Sketching — The good and the bad

e Obviously, the best sketching vectors are singular vectors... which
would defeat the point.

e If the matrix is exactly rank k& and we sketch with a matrix of size
m X k then (with probability 1) the column space of Y will contain
the column space of A and so (disregarding condition number issues)
can be used as a sketching matrix.

e If the rank(A) is not exactly k the lower singular vectors can

contaminate the entries of Y producing poor results.
The fix? Take k + 10...



Sketching

Fix a small integer p (like 10 or 50).

For a set of k 4+ p Gaussian ransom vectors {g;}

Apply A to obtain y; = Ag;

Perform Gram-Schmidt of y; to obtain q;

This still requires O(mnk) work — though can be optimized!
(matmat, matvec, etc)



Randomized range finder

e We want to find Q € F™*¢ with smallest £ s.t.

1-Q"QA| <¢

for a desired e.

e Incrementally use the previous idea:
1. Draw a Gaussian vector g; and compute y; = Ag;
2. Construct q = (1 — Qi—1Q;_,)y;
3. Set q; = a/||q
4. Form Q; = (Qi-1,q;)

Continue until the desired accuracy is reached.



RSVD

e Halko, Martinsson, and Tropp [Theorem 1.1]:
Suppose that A € R™*", Select a target rank k > 2 and an
oversampling parameter p > 2, where k + p < minm, n. Execute the
proto-algorithm with a standard Gaussian test matrix to obtain
Q € R™*(+P) orthonormal. Then

. WETp —
E([[A-QQ*A[) < <1 + ?1]?\/ mm(m,n)) Ok+1
Recall EYM:

inf [|[A—B| =041
BG(Can
rank(B)<k
e On average, the algorithm produces a basis whose error lies within a

small polynomial factor of the theoretical minimum



