
1/1

Low Rank approximation
Lecture 2

F. M. Faulstich

01/12/2024



2/1

The SVD

• Recall the SVD of A ∈ Fm×n is given by

A = UΣV∗ =

min(m,n)∑
i=1

σiuiv
∗
i

where U ∈ Fm×m, V ∈ Fn×n are orthonormal, and Σ ∈ Fm×n is
diagonal.
Columns of U are the left singular vectors
Columns of V are the right singular vectors

• The rank of A ∈ Fm×n is given by the number of non-zero singular
values



3/1

The SVD

• One construction: diagonalize

M =

(
0 A

A∗ 0

)
The eigenvalues come in pairs (σi,−σi).
If A ∈ Fm×n, the first m entries in the eigenvectors are the left
singular vectors, and the last n entries are the right singular vectors.

• We can then compute the rank k matrix

Ak =

k∑
i=1

σiuiv
∗
i

for k ≤ min(m,n).



4/1

Eckart-Young-Mirsky

• The matrix Ak is a rank k approximation to A.
How good of an approximation?

• EYM for Frobenius norm:
Let A ∈ Fm×n with rank(A) = r. For any 1 ≤ k ≤ r we have

‖A−Ak‖F = inf
B∈Cm×n

rank(B)≤k

‖A−B‖F =
√
σ2k+1 + ...+ σ2r

• EYM for spectral norm:
Let A ∈ Fm×n with rank(A) = r. For any 1 ≤ k ≤ r we have

‖A−Ak‖ = inf
B∈Cm×n

rank(B)≤k

‖A−B‖ = σk+1



5/1

The SVD – The good and the bad

• Galois – eigendecompositions of generic matrices can only be done
iteratively
(equivalent to polynomial factorization)

• Practically speaking, computing the SVD takes O(mnp) operations
where p = min(m,n)

• SVD algorithms are difficult to parallelize and tend to be slower than
forming other decompositions



6/1

The QR decomposition – Vanilla version

• The QR decomposition of A ∈ Fm×n is given by

A = QR

where Q ∈ Fm×m is orthonormal, and R ∈ Fm×n is upper triangular.

• Use classical Gram-Schmidt: Store the inner products and
normalization in R, and store the orthonormal vectors in Q.

• CGS can be unstable: Suppose that the first few columns are all
essentially parallel with small errors. CGS will try to construct
orthogonal vectors out of a set of essentially identical vectors!
Sadly, there are a number of applications in which this is the setup ...



7/1

The QR decomposition – Column-pivoted QR

• Instead of CGS, let’s try to write

AP = QR

where:
A ∈ Fm×n

P ∈ Fn×n is a permutation matrix
Q ∈ Fm×n orthonormal
R ∈ Fn×n upper triangular



8/1

The QR decomposition – CPQR algorithm

• Initialize Q0 = [], R0 = [], E0 = A, p = min(m,n)

• for k = 1 : p
jk = argmax{‖Ek−1(:, `)‖ | ` = 1, ..., n}
q = Ek−1(:, jk)/‖Ek−1(:, jk)‖
r = q∗Ek−1
Qk = (Qk−1,q)

Rk =

(
Rk−1

r

)
Ek = Ek−1 − qr

end for

• Q = Qp, R = Rp, P = (j1, ..., jp)



9/1

Low rank via QR

• After k steps of the previous algorithm, we have

A = QkRk + Ek

where A,Ek ∈ Fm×n, Qk ∈ Fm×k and Rk ∈ Fk×n

• The first term is of rank k, and the second term is the reminder.

• A reasonable stopping criterion would be

‖Ek‖F ≤ ε

• We can use the partial CPQR to obtain a partial SVD
1) Compute an SVD of Rk = ÛΣV∗ (cheap since Rk has k rows)
2) Set U = QkÛ
⇒ A = UΣV∗ + Ek



10/1

The interpolative decomposition
a.k.a. skeletonization

• The ID of A ∈ Fm×n is given by

A = CZ

where C ∈ Fm×k consists of k columns of A and Z ∈ Fk×n is a
“well-conditioned” matrix.

• Clearly, if A is sparse or non-negative then C will also be sparse or
non-negative.
(This is not true with the QR or SVD)

• The ID typically requires less memory than QR or SVD

• The indices of the columns tell us something about the data!
(Also physics preserving)



11/1

The interpolative decomposition
a.k.a. skeletonization

• There is also a row-based ID of A ∈ Fm×n:

A = XR

where X ∈ Fm×k is well-conditioned and the rows of R ∈ Fk×n are a
subset of the rows of A.

• Finally, we do both:
A = XAsZ

where X ∈ Fm×k and Z ∈ Fk×n are well-conditioned, and As ∈ Fk×k

is a submatrix of A.

• The latter can be formed by taking a row-ID of the column-ID or
vice versa.

• The choices of subsets of rows and columns are often referred to as
skeletons



12/1

How do we compute it?

• From CPQR we obtain a set of columns that effectively span the
column space. They are also, in a certain sense, pretty orthogonal to
each other.

• Write: AP = QS and set

Q = (Q1,Q2) and S =

(
S11 S12

0 S22

)
where Q1 ∈ Fm×k, Q2 ∈ Fm×(n−k), S11 ∈ Fk×k, etc.



13/1

How do we compute it?

• Then

AP = (Q1S11,Q1S12 + Q2S22)

= Q1(S11,S12) + Q2(0,S22)

= Q1S11(1,S
−1
11 S12) + Q2(0,S22)

= Q1S11(1,T) + Q2(0,S22)

⇔ A = Q1S11(1,T)P∗ + Q2(0,S22)P
∗

= Q1S11Z + Q2(0,S22)P
∗

= CZ + Q2(0,S22)P
∗

• What bout S−111 ? If A is at least rank k then S11 is invertible.
If it is not, then change k



14/1

What about speed?
Randomized low-rank approximations

• At some point it is difficult to guarantee that the deterministic
columns we chose are guaranteed to be a well-conditioned basis for
the entire column space. This can be especially problematic when we
don’t know the rank!

• Idea (exactly rank k): random sketching.
Apply your matrix to a suitably-scaled random matrix. With
probability 1 it won’t ‘miss’ any of the columns.

• Example:
Consider G ∈ Rn×k an i.i.d. Gaussian matrix.
Set Y = AG and Ak = Y(Y†A)
... How to calculate?



15/1

Two-stage low-rank approximation

• Given A ∈ Fm×n of rank k.

• Stage A: Sketch it!
Compute an approximate basis for the range of A, i.e., Q ∈ Fm×`

orthonormal with k ≤ ` ≤ n s.t.

A ≈ QQ∗A

• Stage B: Classical factorization
Compute SVD of B = Q∗A ∈ F`×n (this is a much smaller matrix!)

B = ÛΣV∗

and define U = QÛ

• All accuracy loss and computational cost are now in Stage A!



16/1

Sketching – The good and the bad

• Obviously, the best sketching vectors are singular vectors... which
would defeat the point.

• If the matrix is exactly rank k and we sketch with a matrix of size
m× k then (with probability 1) the column space of Y will contain
the column space of A and so (disregarding condition number issues)
can be used as a sketching matrix.

• If the rank(A) is not exactly k the lower singular vectors can
contaminate the entries of Y producing poor results.
The fix? Take k + 10...



17/1

Sketching

• Fix a small integer p (like 10 or 50).

• For a set of k + p Gaussian ransom vectors {gj}
• Apply A to obtain yj = Agj

• Perform Gram-Schmidt of yj to obtain qj

• This still requires O(mnk) work – though can be optimized!
(matmat, matvec, etc)



18/1

Randomized range finder

• We want to find Q ∈ Fm×` with smallest ` s.t.

‖1−Q∗QA‖ ≤ ε

for a desired ε.

• Incrementally use the previous idea:
1. Draw a Gaussian vector gi and compute yi = Agj

2. Construct q̃ = (1−Qi−1Q
∗
i−1)yi

3. Set qi = q̃/‖q̃‖
4. Form Qi = (Qi−1,qi)

Continue until the desired accuracy is reached.



19/1

RSVD

• Halko, Martinsson, and Tropp [Theorem 1.1]:
Suppose that A ∈ Rm×n. Select a target rank k ≥ 2 and an
oversampling parameter p ≥ 2, where k + p ≤ minm,n. Execute the
proto-algorithm with a standard Gaussian test matrix to obtain
Q ∈ Rm×(k+p) orthonormal. Then

E (‖A−QQ∗A‖) ≤
(

1 +
4
√
k + p

p− 1

√
min(m,n)

)
σk+1

Recall EYM:

inf
B∈Cm×n

rank(B)≤k

‖A−B‖ = σk+1

• On average, the algorithm produces a basis whose error lies within a
small polynomial factor of the theoretical minimum


