Low Rank approximation Lecture 2

F. M. Faulstich

01/12/2024

The SVD

- Recall the SVD of $\mathbf{A} \in \mathbb{F}^{m \times n}$ is given by

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}=\sum_{i=1}^{\min (m, n)} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{*}
$$

where $\mathbf{U} \in \mathbb{F}^{m \times m}, \mathbf{V} \in \mathbb{F}^{n \times n}$ are orthonormal, and $\boldsymbol{\Sigma} \in \mathbb{F}^{m \times n}$ is diagonal.
Columns of \mathbf{U} are the left singular vectors
Columns of \mathbf{V} are the right singular vectors

- The rank of $\mathbf{A} \in \mathbb{F}^{m \times n}$ is given by the number of non-zero singular values

The SVD

- One construction: diagonalize

$$
\mathbf{M}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{A} \\
\mathbf{A}^{*} & \mathbf{0}
\end{array}\right)
$$

The eigenvalues come in pairs $\left(\sigma_{i},-\sigma_{i}\right)$.
If $\mathbf{A} \in \mathbb{F}^{m \times n}$, the first m entries in the eigenvectors are the left singular vectors, and the last n entries are the right singular vectors.

- We can then compute the rank k matrix

$$
\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{*}
$$

for $k \leq \min (m, n)$.

Eckart-Young-Mirsky

- The matrix \mathbf{A}_{k} is a rank k approximation to \mathbf{A}. How good of an approximation?
- EYM for Frobenius norm:

Let $\mathbf{A} \in \mathbb{F}^{m \times n}$ with $\operatorname{rank}(\mathbf{A})=r$. For any $1 \leq k \leq r$ we have

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\inf _{\substack{\mathbf{B} \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(\mathbf{B}) \leq k}}\|\mathbf{A}-\mathbf{B}\|_{F}=\sqrt{\sigma_{k+1}^{2}+\ldots+\sigma_{r}^{2}}
$$

- EYM for spectral norm:

Let $\mathbf{A} \in \mathbb{F}^{m \times n}$ with $\operatorname{rank}(\mathbf{A})=r$. For any $1 \leq k \leq r$ we have

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\inf _{\substack{\mathbf{B} \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(\mathbf{B}) \leq k}}\|\mathbf{A}-\mathbf{B}\|=\sigma_{k+1}
$$

The SVD - The good and the bad

- Galois - eigendecompositions of generic matrices can only be done iteratively
(equivalent to polynomial factorization)
- Practically speaking, computing the SVD takes $\mathcal{O}(m n p)$ operations where $p=\min (m, n)$
- SVD algorithms are difficult to parallelize and tend to be slower than forming other decompositions

The QR decomposition - Vanilla version

- The QR decomposition of $\mathbf{A} \in \mathbb{F}^{m \times n}$ is given by

$$
\mathbf{A}=\mathbf{Q} \mathbf{R}
$$

where $\mathbf{Q} \in \mathbb{F}^{m \times m}$ is orthonormal, and $\mathbf{R} \in \mathbb{F}^{m \times n}$ is upper triangular.

- Use classical Gram-Schmidt: Store the inner products and normalization in \mathbf{R}, and store the orthonormal vectors in \mathbf{Q}.
- CGS can be unstable: Suppose that the first few columns are all essentially parallel with small errors. CGS will try to construct orthogonal vectors out of a set of essentially identical vectors! Sadly, there are a number of applications in which this is the setup ...

The QR decomposition - Column-pivoted QR

- Instead of CGS, let's try to write

$$
\mathbf{A P}=\mathbf{Q R}
$$

where:
$\mathbf{A} \in \mathbb{F}^{m \times n}$
$\mathbf{P} \in \mathbb{F}^{n \times n}$ is a permutation matrix
$\mathbf{Q} \in \mathbb{F}^{m \times n}$ orthonormal
$\mathbf{R} \in \mathbb{F}^{n \times n}$ upper triangular

The QR decomposition - CPQR algorithm

- Initialize $\mathbf{Q}_{0}=[], \mathbf{R}_{0}=[], \mathbf{E}_{0}=\mathbf{A}, p=\min (m, n)$
- for $k=1$: p

$$
\begin{aligned}
& j_{k}=\operatorname{argmax}\left\{\left\|\mathbf{E}_{k-1}(:, \ell)\right\| \mid \ell=1, \ldots, n\right\} \\
& \mathbf{q}=\mathbf{E}_{k-1}\left(:, j_{k}\right) /\left\|\mathbf{E}_{k-1}\left(:, j_{k}\right)\right\| \\
& \mathbf{r}=\mathbf{q}^{*} \mathbf{E}_{k-1} \\
& \mathbf{Q}_{k}=\left(\mathbf{Q}_{k-1}, \mathbf{q}\right) \\
& \mathbf{R}_{k}=\binom{\mathbf{R}_{k-1}}{\mathbf{r}} \\
& \mathbf{E}_{k}=\mathbf{E}_{k-1}-\mathbf{q r}
\end{aligned}
$$

end for

- $\mathbf{Q}=\mathbf{Q}_{p}, \mathbf{R}=\mathbf{R}_{p}, \mathbf{P}=\left(j_{1}, \ldots, j_{p}\right)$

Low rank via QR

- After k steps of the previous algorithm, we have

$$
\mathbf{A}=\mathbf{Q}_{k} \mathbf{R}_{k}+\mathbf{E}_{k}
$$

where $\mathbf{A}, \mathbf{E}_{k} \in \mathbb{F}^{m \times n}, \mathbf{Q}_{k} \in \mathbb{F}^{m \times k}$ and $\mathbf{R}_{k} \in \mathbb{F}^{k \times n}$

- The first term is of rank k, and the second term is the reminder.
- A reasonable stopping criterion would be

$$
\left\|\mathbf{E}_{k}\right\|_{F} \leq \varepsilon
$$

- We can use the partial CPQR to obtain a partial SVD

1) Compute an SVD of $\mathbf{R}_{k}=\hat{\mathbf{U}} \boldsymbol{\Sigma} \mathbf{V}^{*}$ (cheap since \mathbf{R}_{k} has k rows)
2) Set $\mathbf{U}=\mathbf{Q}_{k} \hat{\mathbf{U}}$
$\Rightarrow \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}+\mathbf{E}_{k}$

The interpolative decomposition

 a.k.a. skeletonization- The ID of $\mathbf{A} \in \mathbb{F}^{m \times n}$ is given by

$$
\mathbf{A}=\mathbf{C Z}
$$

where $\mathbf{C} \in \mathbb{F}^{m \times k}$ consists of k columns of \mathbf{A} and $\mathbf{Z} \in \mathbb{F}^{k \times n}$ is a "well-conditioned" matrix.

- Clearly, if \mathbf{A} is sparse or non-negative then \mathbf{C} will also be sparse or non-negative.
(This is not true with the QR or SVD)
- The ID typically requires less memory than QR or SVD
- The indices of the columns tell us something about the data! (Also physics preserving)

The interpolative decomposition

 a.k.a. skeletonization- There is also a row-based ID of $\mathbf{A} \in \mathbb{F}^{m \times n}$:

$$
\mathbf{A}=\mathbf{X R}
$$

where $\mathbf{X} \in \mathbb{F}^{m \times k}$ is well-conditioned and the rows of $\mathbf{R} \in \mathbb{F}^{k \times n}$ are a subset of the rows of \mathbf{A}.

- Finally, we do both:

$$
\mathbf{A}=\mathbf{X} \mathbf{A}_{s} \mathbf{Z}
$$

where $\mathbf{X} \in \mathbb{F}^{m \times k}$ and $\mathbf{Z} \in \mathbb{F}^{k \times n}$ are well-conditioned, and $\mathbf{A}_{s} \in \mathbb{F}^{k \times k}$ is a submatrix of \mathbf{A}.

- The latter can be formed by taking a row-ID of the column-ID or vice versa.
- The choices of subsets of rows and columns are often referred to as skeletons

How do we compute it?

- From CPQR we obtain a set of columns that effectively span the column space. They are also, in a certain sense, pretty orthogonal to each other.
- Write: $\mathbf{A P}=\mathbf{Q S}$ and set

$$
\mathbf{Q}=\left(\mathbf{Q}_{1}, \mathbf{Q}_{2}\right) \quad \text { and } \quad \mathbf{S}=\left(\begin{array}{cc}
\mathbf{S}_{11} & \mathbf{S}_{12} \\
\mathbf{0} & \mathbf{S}_{22}
\end{array}\right)
$$

where $\mathbf{Q}_{1} \in \mathbb{F}^{m \times k}, \mathbf{Q}_{2} \in \mathbb{F}^{m \times(n-k)}, \mathbf{S}_{11} \in \mathbb{F}^{k \times k}$, etc.

How do we compute it?

- Then

$$
\begin{aligned}
\mathbf{A P} & =\left(\mathbf{Q}_{1} \mathbf{S}_{11}, \mathbf{Q}_{1} \mathbf{S}_{12}+\mathbf{Q}_{2} \mathbf{S}_{22}\right) \\
& =\mathbf{Q}_{1}\left(\mathbf{S}_{11}, \mathbf{S}_{12}\right)+\mathbf{Q}_{2}\left(\mathbf{0}, \mathbf{S}_{22}\right) \\
& =\mathbf{Q}_{1} \mathbf{S}_{11}\left(\mathbf{1}, \mathbf{S}_{11}^{-1} \mathbf{S}_{12}\right)+\mathbf{Q}_{2}\left(\mathbf{0}, \mathbf{S}_{22}\right) \\
& =\mathbf{Q}_{1} \mathbf{S}_{11}(\mathbf{1}, \mathbf{T})+\mathbf{Q}_{2}\left(\mathbf{0}, \mathbf{S}_{22}\right) \\
\Leftrightarrow \mathbf{A} & =\mathbf{Q}_{1} \mathbf{S}_{11}(\mathbf{1}, \mathbf{T}) \mathbf{P}^{*}+\mathbf{Q}_{2}\left(\mathbf{0}, \mathbf{S}_{22}\right) \mathbf{P}^{*} \\
& =\mathbf{Q}_{1} \mathbf{S}_{11} \mathbf{Z}+\mathbf{Q}_{2}\left(\mathbf{0}, \mathbf{S}_{22}\right) \mathbf{P}^{*} \\
& =\mathbf{C} \mathbf{Z}+\mathbf{Q}_{2}\left(\mathbf{0}, \mathbf{S}_{22}\right) \mathbf{P}^{*}
\end{aligned}
$$

- What bout \mathbf{S}_{11}^{-1} ? If \mathbf{A} is at least rank k then \mathbf{S}_{11} is invertible. If it is not, then change k

What about speed?

Randomized low-rank approximations

- At some point it is difficult to guarantee that the deterministic columns we chose are guaranteed to be a well-conditioned basis for the entire column space. This can be especially problematic when we don't know the rank!
- Idea (exactly rank k): random sketching.

Apply your matrix to a suitably-scaled random matrix. With probability 1 it won't 'miss' any of the columns.

- Example:

Consider $\mathbf{G} \in \mathbb{R}^{n \times k}$ an i.i.d. Gaussian matrix. Set $\mathbf{Y}=\mathbf{A G}$ and $\mathbf{A}_{k}=\mathbf{Y}\left(\mathbf{Y}^{\dagger} \mathbf{A}\right)$
... How to calculate?

Two-stage low-rank approximation

- Given $\mathbf{A} \in \mathbb{F}^{m \times n}$ of rank k.
- Stage A: Sketch it!

Compute an approximate basis for the range of \mathbf{A}, i.e., $\mathbf{Q} \in \mathbb{F}^{m \times \ell}$ orthonormal with $k \leq \ell \leq n$ s.t.

$$
\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A}
$$

- Stage B: Classical factorization Compute SVD of $\mathbf{B}=\mathbf{Q}^{*} \mathbf{A} \in \mathbb{F}^{\ell \times n}$ (this is a much smaller matrix!)

$$
\mathbf{B}=\hat{\mathbf{U}} \boldsymbol{\Sigma} \mathbf{V}^{*}
$$

and define $\mathbf{U}=\mathbf{Q} \hat{\mathbf{U}}$

- All accuracy loss and computational cost are now in Stage A!

Sketching - The good and the bad

- Obviously, the best sketching vectors are singular vectors... which would defeat the point.
- If the matrix is exactly rank k and we sketch with a matrix of size $m \times k$ then (with probability 1) the column space of Y will contain the column space of A and so (disregarding condition number issues) can be used as a sketching matrix.
- If the $\operatorname{rank}(\mathbf{A})$ is not exactly k the lower singular vectors can contaminate the entries of Y producing poor results.
The fix? Take $k+10$...

Sketching

- Fix a small integer p (like 10 or 50).
- For a set of $k+p$ Gaussian ransom vectors $\left\{\mathbf{g}_{j}\right\}$
- Apply A to obtain $\mathbf{y}_{j}=\mathbf{A} \mathbf{g}_{j}$
- Perform Gram-Schmidt of \mathbf{y}_{j} to obtain \mathbf{q}_{j}
- This still requires $\mathcal{O}(m n k)$ work - though can be optimized! (matmat, matvec, etc)

Randomized range finder

- We want to find $\mathbf{Q} \in \mathbb{F}^{m \times \ell}$ with smallest ℓ s.t.

$$
\left\|\mathbf{1}-\mathbf{Q}^{*} \mathbf{Q A}\right\| \leq \varepsilon
$$

for a desired ε.

- Incrementally use the previous idea:

1. Draw a Gaussian vector \mathbf{g}_{i} and compute $\mathbf{y}_{i}=\mathbf{A} \mathbf{g}_{j}$
2. Construct $\tilde{\mathbf{q}}=\left(\mathbf{1}-\mathbf{Q}_{i-1} \mathbf{Q}_{i-1}^{*}\right) \mathbf{y}_{i}$
3. Set $\mathbf{q}_{i}=\tilde{\mathbf{q}} /\|\tilde{\mathbf{q}}\|$
4. Form $\mathbf{Q}_{i}=\left(\mathbf{Q}_{i-1}, \mathbf{q}_{i}\right)$

Continue until the desired accuracy is reached.

RSVD

- Halko, Martinsson, and Tropp [Theorem 1.1]:

Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$. Select a target rank $k \geq 2$ and an oversampling parameter $p \geq 2$, where $k+p \leq \min m$, n. Execute the proto-algorithm with a standard Gaussian test matrix to obtain $\mathbf{Q} \in \mathbb{R}^{m \times(k+p)}$ orthonormal. Then

$$
\mathbb{E}\left(\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|\right) \leq\left(1+\frac{4 \sqrt{k+p}}{p-1} \sqrt{\min (m, n)}\right) \sigma_{k+1}
$$

Recall EYM:

$$
\inf _{\substack{\mathbf{B} \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(\mathbf{B}) \leq k}}\|\mathbf{A}-\mathbf{B}\|=\sigma_{k+1}
$$

- On average, the algorithm produces a basis whose error lies within a small polynomial factor of the theoretical minimum

