Eigenvalue Computations Lecture 20

F. M. Faulstich

04/09/2024

Eigenvalue Problem

Given $\mathbf{A} \in \mathbb{C}^{m \times m}$. Then,

- i) we call $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^m$ eigenvector of \mathbf{A}
- ii) we call $\lambda \in \mathbb{C}$ eigenvalue

if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

Intuitively:

Eigenvalue Problem

Given $\mathbf{A} \in \mathbb{C}^{m \times m}$. Then,

- i) we call $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^m$ eigenvector of \mathbf{A}
- ii) we call $\lambda \in \mathbb{C}$ eigenvalue

if

$$Ax = \lambda x$$

Intuitively:

The action of **A** on a subspace $S \subseteq \mathbb{C}^m$ mimics a scalar multiplication. The subspace S is then called an eigenspace, and any nonzero $\mathbf{x} \in S$ is an eigenvector.

We denote the set of all eigenvalues (the spectrum) of \mathbf{A} by $\Lambda(\mathbf{A}) \subset \mathbb{C}$

Eigenvalue Decomposition

Eigenvalue Decomposition

An eigenvalue decomposition of $\mathbf{A} \in \mathbb{C}^{m \times m}$ is a factorization

 $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$

where **X** is non-singular, and Λ is diagonal.

Eigenvalue Decomposition

An eigenvalue decomposition of $\mathbf{A} \in \mathbb{C}^{m \times m}$ is a factorization

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

where \mathbf{X} is non-singular, and $\boldsymbol{\Lambda}$ is diagonal.

Note:

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1} \iff \mathbf{A} \mathbf{X} = \mathbf{X} \mathbf{\Lambda}$$

thus, the jth column of **X** is an eigenvector of **A** and the jth entry of Λ is the corresponding eigenvalue.

Geometric Multiplicity

Given an eigenvalue $\lambda \in \mathbb{C}$.

- We denote E_{λ} the corresponding eigenspace
- E_{λ} is an **A**-invariant subspace, i.e.,

$$\mathbf{A}E_{\lambda}\subseteq E_{\lambda}$$

• $\dim(E_{\lambda})$ is the geometric multiplicity of λ

• Note:

$$\dim(E_{\lambda}) = \dim(\ker(\mathbf{A} - \lambda \mathbf{I}))$$

Characteristic Polynomial

- Given $\mathbf{A} \in \mathbb{C}^{m \times m}$.
 - We call

$$p_{\mathbf{A}}(z) = \det(z\mathbf{I} - \mathbf{A})$$

the characteristic polynomial

• $\lambda \in \mathbb{C}$ is an eigenvalue of **A** iff $p_{\mathbf{A}}(\lambda) = 0$

 \Rightarrow Even if $\mathbf{A} \in \mathbb{R}^{m \times m}$, λ may be complex!

Algebraic multiplicity

• Fundamental theorem of algebra:

$$p_{\mathbf{A}}(z) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)$$

for some $\lambda_j \in \mathbb{C}$.

- The algebraic multiplicity of λ is its multiplicity as a root of $p_{\mathbf{A}}$
- If $\mathbf{A} \in \mathbb{C}^{m \times m}$, then \mathbf{A} has m eigenvalues, counted with algebraic multiplicity.

 \Rightarrow Every matrix has at least one eigenvalue

Similarity Transformations

Let $\mathbf{X} \in \mathbb{C}^{m \times m}$ be non-singular

- The map $\mathbf{A}\mapsto \mathbf{X}\mathbf{A}\mathbf{X}^{-1}$ is called a similarity transformation of \mathbf{A}
- Two matrices $\mathbf{A}, \ \mathbf{B} \in \mathbb{C}^{m \times m}$ iff $\exists \mathbf{X}$ non-singular s.t.

$$\mathbf{B} = \mathbf{X}\mathbf{A}\mathbf{X}^{-1}$$

- Let ${\bf X}$ be non-singular, then ${\bf A}$ and ${\bf X}{\bf A}{\bf X}^{-1}$ have the same
 - i) characteristic polynomial
 - ii) eigenvalues
 - iii) algebraic and geometric multiplicities

Theorem:

The algebraic multiplicity of an eigenvalue λ is at least as great as its geometric multiplicity.

Diagonalizability

- A is called non-defective if the algebraic multiplicity equals the geometric multiplicity for all eigenvalues
- $\mathbf{A} \in \mathbb{C}^{m \times m}$ is non-defective iff it has an eigenvalue decomposition.

Computing Eigenvalues

Eigenvalues correspond to roots of a polynomial

There exists no closed form for roots of polynomials of degree ≥ 5

How do we compute the eigenvalues?

Computing Eigenvalues

Eigenvalues correspond to roots of a polynomial

There exists no closed form for roots of polynomials of degree ≥ 5

How do we compute the eigenvalues?

We compute eigenvalue revealing decompositions:

- eigenvalue decomposition
- unitary eigenvalue decomposition
- Schur decomposition (Schur factorization)

Computing Eigenvalues

Eigenvalues correspond to roots of a polynomial

There exists no closed form for roots of polynomials of degree ≥ 5

How do we compute the eigenvalues? We compute eigenvalue revealing decompositions:

- eigenvalue decomposition
- unitary eigenvalue decomposition
- Schur decomposition (Schur factorization)

General procedure:

Phase 1: Direct computation Phase 2: Iterative computation

Hessenberg Form

Q: Why compute the Hessenberg form? \Rightarrow "Can't we just use Householder like for linear systems?" Q: Why compute the Hessenberg form? No, we cannot:

Q: Why compute the Hessenberg form? (Upper) Hessenberg form is close to diagonal \Rightarrow improves the scaling!

Hessenberg Form

Q: How do we compute the Hessenberg form?

Q: How do we compute the Hessenberg form?

Householder!

Q: How do we compute the Hessenberg form?

Hessenberg Form

Q: How do we compute the Hessenberg form?

$$\begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & & & & \times & \times \\ 0 & 0 & & & & \times & \times \\ 0 & 0 & & & & & \times & \times \\ 0 & 0 & & & & & \times & \times \\ Q_2^*Q_1^*\mathbf{A}Q_1Q_2 \end{array} \xrightarrow{Q_3^*Q_2^*Q_1^*\mathbf{A}Q_1Q_2} \xrightarrow{Q_3^*Q_2^*Q_1^*\mathbf{A}Q_1Q_2}$$

Power Iteration:

 $\mathbf{v}^{(0)} \text{ some vector with } \|\mathbf{v}^{(0)}\| = 1$ for k = 1,2,... $\mathbf{w} = \mathbf{A}\mathbf{v}^{(k-1)}$ $\mathbf{v}^{(k)} = \mathbf{w}/\|\mathbf{w}\|$ $\lambda^{(k)} = (\mathbf{v}^{(k)})^{\top}\mathbf{A}\mathbf{v}^{(k)}$

Inverse Iteration:

$$\mathbf{v}^{(0)} \text{ some vector with } \|\mathbf{v}^{(0)}\| = 1$$

for k = 1,2,...
Solve $(\mathbf{A} - \mu \mathbf{I})\mathbf{w} = \mathbf{v}^{(k-1)}$
 $\mathbf{v}^{(k)} = \mathbf{w}/\|\mathbf{w}\|$
 $\lambda^{(k)} = (\mathbf{v}^{(k)})^{\top} \mathbf{A} \mathbf{v}^{(k)}$

Rayleigh Quotient Iteration: $\mathbf{v}^{(0)} \text{ some vector with } \|\mathbf{v}^{(0)}\| = 1$ $\lambda^{(0)} = (\mathbf{v}^{(0)})^{\top} \mathbf{A} \mathbf{v}^{(0)}$ for k = 1,2,... Solve $(\mathbf{A} - \lambda^{(k-1)} \mathbf{I}) \mathbf{w} = \mathbf{v}^{(k-1)}$ $\mathbf{v}^{(k)} = \mathbf{w} / \|\mathbf{w}\|$ $\lambda^{(k)} = (\mathbf{v}^{(k)})^{\top} \mathbf{A} \mathbf{v}^{(k)}$

"Pure" QR algorithm (without shift): $\mathbf{A}^{(0)} = \mathbf{A}$ for k = 1,2,... $\mathbf{Q}^{(k)}\mathbf{R}^{(k)} = \mathbf{A}^{(k-1)}$ $\mathbf{A}^{(k)} = \mathbf{R}^{(k)}\mathbf{Q}^{(k)}$

"Practical" QR algorithm (with shift): $(\mathbf{Q}^{(0)})^{\top} \mathbf{A}^{(0)} \mathbf{Q}^{(0)} = \mathbf{A}$ for k = 1.2...e.g. $\mu^{(k)} = \mathbf{A}_{m m}^{(k-1)}$ Pick $\mu^{(k)}$ $\mathbf{Q}^{(k)}\mathbf{R}^{(k)} = \mathbf{A}^{(k-1)} - \boldsymbol{\mu}^{(k)}\mathbf{I}$ $\mathbf{A}^{(k)} = \mathbf{R}^{(k)}\mathbf{Q}^{(k)} + \boldsymbol{\mu}^{(k)}\mathbf{I}$ If any off-diag. element $\mathbf{A}_{i,i+1}$ us sufficiently small: Set $A_{i,i+1} = A_{i+1,i} = 0$ $\begin{vmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{vmatrix} = \mathbf{A}^{(k)}$

and apply the QR decomposition to A_1 and A_2 .

Jacobi

Bisection

÷