Eigenvalue Computations Lecture 20

F. M. Faulstich

04/09/2024

Eigenvalue Problem

Given $\mathbf{A} \in \mathbb{C}^{m \times m}$. Then,
i) we call $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^{m}$ eigenvector of \mathbf{A}
ii) we call $\lambda \in \mathbb{C}$ eigenvalue
if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

Intuitively:

Eigenvalue Problem

Given $\mathbf{A} \in \mathbb{C}^{m \times m}$. Then,
i) we call $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^{m}$ eigenvector of \mathbf{A}
ii) we call $\lambda \in \mathbb{C}$ eigenvalue
if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

Intuitively:
The action of A on a subspace $S \subseteq \mathbb{C}^{m}$ mimics a scalar multiplication. The subspace S is then called an eigenspace, and any nonzero $\mathbf{x} \in S$ is an eigenvector.

We denote the set of all eigenvalues (the spectrum) of \mathbf{A} by $\Lambda(\mathbf{A}) \subset \mathbb{C}$

Eigenvalue Decomposition

Eigenvalue Decomposition

An eigenvalue decomposition of $\mathbf{A} \in \mathbb{C}^{m \times m}$ is a factorization

$$
\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}
$$

where \mathbf{X} is non-singular, and $\boldsymbol{\Lambda}$ is diagonal.

Eigenvalue Decomposition

An eigenvalue decomposition of $\mathbf{A} \in \mathbb{C}^{m \times m}$ is a factorization

$$
\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}
$$

where \mathbf{X} is non-singular, and $\boldsymbol{\Lambda}$ is diagonal.
Note:

$$
\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1} \Leftrightarrow \mathbf{A} \mathbf{X}=\mathbf{X} \mathbf{\Lambda}
$$

thus, the jth column of \mathbf{X} is an eigenvector of \mathbf{A} and the j th entry of $\boldsymbol{\Lambda}$ is the corresponding eigenvalue.

Geometric Multiplicity

Given an eigenvalue $\lambda \in \mathbb{C}$.

- We denote E_{λ} the corresponding eigenspace
- E_{λ} is an A-invariant subspace, i.e.,

$$
\mathbf{A} E_{\lambda} \subseteq E_{\lambda}
$$

- $\operatorname{dim}\left(E_{\lambda}\right)$ is the geometric multiplicity of λ
- Note:

$$
\operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}(\operatorname{ker}(\mathbf{A}-\lambda \mathbf{I}))
$$

Characteristic Polynomial

Given $\mathbf{A} \in \mathbb{C}^{m \times m}$.

- We call

$$
p_{\mathbf{A}}(z)=\operatorname{det}(z \mathbf{I}-\mathbf{A})
$$

the characteristic polynomial

- $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{A} iff $p_{\mathbf{A}}(\lambda)=0$
\Rightarrow Even if $\mathbf{A} \in \mathbb{R}^{m \times m}, \lambda$ may be complex!

Algebraic multiplicity

- Fundamental theorem of algebra:

$$
p_{\mathbf{A}}(z)=\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{m}\right)
$$

for some $\lambda_{j} \in \mathbb{C}$.

- The algebraic multiplicity of λ is its multiplicity as a root of $p_{\mathbf{A}}$
- If $\mathbf{A} \in \mathbb{C}^{m \times m}$, then \mathbf{A} has m eigenvalues, counted with algebraic multiplicity.
\Rightarrow Every matrix has at least one eigenvalue

Similarity Transformations

Let $\mathbf{X} \in \mathbb{C}^{m \times m}$ be non-singular

- The map $\mathbf{A} \mapsto \mathbf{X A X}^{-1}$ is called a similarity transformation of \mathbf{A}
- Two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times m}$ iff $\exists \mathbf{X}$ non-singular s.t.

$$
\mathbf{B}=\mathbf{X A X}^{-1}
$$

- Let \mathbf{X} be non-singular, then \mathbf{A} and $\mathbf{X A X}{ }^{-1}$ have the same
i) characteristic polynomial
ii) eigenvalues
iii) algebraic and geometric multiplicities

Theorem:
The algebraic multiplicity of an eigenvalue λ is at least as great as its geometric multiplicity.

Diagonalizability

- A is called non-defective if the algebraic multiplicity equals the geometric multiplicity for all eigenvalues
- $\mathbf{A} \in \mathbb{C}^{m \times m}$ is non-defective iff it has an eigenvalue decomposition.

Computing Eigenvalues

Eigenvalues correspond to roots of a polynomial
There exists no closed form for roots of polynomials of degree ≥ 5
How do we compute the eigenvalues?

Computing Eigenvalues

Eigenvalues correspond to roots of a polynomial
There exists no closed form for roots of polynomials of degree ≥ 5
How do we compute the eigenvalues?
We compute eigenvalue revealing decompositions:

- eigenvalue decomposition
- unitary eigenvalue decomposition
- Schur decomposition (Schur factorization)

Computing Eigenvalues

Eigenvalues correspond to roots of a polynomial
There exists no closed form for roots of polynomials of degree ≥ 5
How do we compute the eigenvalues?
We compute eigenvalue revealing decompositions:

- eigenvalue decomposition
- unitary eigenvalue decomposition
- Schur decomposition (Schur factorization)

General procedure:

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \xrightarrow{\text { 1. }}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right] \xrightarrow{2 .}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right]
$$

Phase 1: Direct computation
Phase 2: Iterative computation

Hessenberg Form

Q: Why compute the Hessenberg form?
\Rightarrow "Can't we just use Householder like for linear systems?"

Hessenberg Form

Q: Why compute the Hessenberg form?
No, we cannot:

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \xrightarrow{Q_{1}^{*}}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right] \xrightarrow{Q_{1}}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

Hessenberg Form

Q: Why compute the Hessenberg form?
(Upper) Hessenberg form is close to diagonal \Rightarrow improves the scaling!

Hessenberg Form

Q: How do we compute the Hessenberg form?

Hessenberg Form

Q: How do we compute the Hessenberg form?
Householder!

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \xrightarrow{Q_{1}^{*} .}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right] \xrightarrow{Q_{1}^{*}}\left[\begin{array}{ccccc}
Q_{1}
\end{array}\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0
\end{array}\right]\right.
$$

Hessenberg Form

Q: How do we compute the Hessenberg form?

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right] \xrightarrow{Q_{2}^{*} .}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{array}\right] \xrightarrow{Q_{1}^{*} \mathbf{A} Q_{1}} \boldsymbol{Q _ { 2 } ^ { * }}\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{array}\right]
$$

Hessenberg Form

Q: How do we compute the Hessenberg form?

Numerical methods

Power Iteration:
$\mathbf{v}^{(0)}$ some vector with $\left\|\mathbf{v}^{(0)}\right\|=1$ for $\mathrm{k}=1,2, \ldots$

$$
\begin{aligned}
& \mathbf{w}=\mathbf{A} \mathbf{v}^{(k-1)} \\
& \mathbf{v}^{(k)}=\mathbf{w} /\|\mathbf{w}\| \\
& \lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{\top} \mathbf{A} \mathbf{v}^{(k)}
\end{aligned}
$$

Numerical methods

Inverse Iteration:
$\mathbf{v}^{(0)}$ some vector with $\left\|\mathbf{v}^{(0)}\right\|=1$ for $\mathrm{k}=1,2, \ldots$

Solve $(\mathbf{A}-\mu \mathbf{I}) \mathbf{w}=\mathbf{v}^{(k-1)}$

$$
\begin{aligned}
& \mathbf{v}^{(k)}=\mathbf{w} /\|\mathbf{w}\| \\
& \lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{\top} \mathbf{A} \mathbf{v}^{(k)}
\end{aligned}
$$

Numerical methods

Rayleigh Quotient Iteration:
$\mathbf{v}^{(0)}$ some vector with $\left\|\mathbf{v}^{(0)}\right\|=1$
$\lambda^{(0)}=\left(\mathbf{v}^{(0)}\right)^{\top} \mathbf{A} \mathbf{v}^{(0)}$
for $\mathrm{k}=1,2, \ldots$
Solve $\left(\mathbf{A}-\lambda^{(k-1)} \mathbf{I}\right) \mathbf{w}=\mathbf{v}^{(k-1)}$
$\mathbf{v}^{(k)}=\mathbf{w} /\|\mathbf{w}\|$
$\lambda^{(k)}=\left(\mathbf{v}^{(k)}\right)^{\top} \mathbf{A} \mathbf{v}^{(k)}$

Numerical methods

"Pure" QR algorithm (without shift):

$$
\mathbf{A}^{(0)}=\mathbf{A}
$$

for $\mathrm{k}=1,2, \ldots$
$\mathbf{Q}^{(k)} \mathbf{R}^{(k)}=\mathbf{A}^{(k-1)}$
$\mathbf{A}^{(k)}=\mathbf{R}^{(k)} \mathbf{Q}^{(k)}$

Numerical methods

"Practical" QR algorithm (with shift):

$$
\left(\mathbf{Q}^{(0)}\right)^{\top} \mathbf{A}^{(0)} \mathbf{Q}^{(0)}=\mathbf{A}
$$

$$
\text { for } \mathrm{k}=1,2, \ldots
$$

Pick $\mu^{(k)}$

$$
\text { e.g. } \mu^{(k)}=\mathbf{A}_{m, m}^{(k-1)}
$$

$$
\mathbf{Q}^{(k)} \mathbf{R}^{(k)}=\mathbf{A}^{(k-1)}-\mu^{(k)} \mathbf{I}
$$

$$
\mathbf{A}^{(k)}=\mathbf{R}^{(k)} \mathbf{Q}^{(k)}+\mu^{(k)} \mathbf{I}
$$

If any off-diag. element $\mathbf{A}_{j, j+1}$ us sufficiently small:
Set $\mathbf{A}_{j, j+1}=\mathbf{A}_{j+1, j}=0$

$$
\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2}
\end{array}\right]=\mathbf{A}^{(k)}
$$

and apply the QR decomposition to \mathbf{A}_{1} and \mathbf{A}_{2}.

Numerical methods

Jacobi
Bisection

