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Eigenvalue Problem

Given A ∈ Cm×m. Then,

i) we call 0 6= x ∈ Cm eigenvector of A

ii) we call λ ∈ C eigenvalue

if
Ax = λx

Intuitively:

The action of A on a subspace S ⊆ Cm mimics a scalar multiplication.
The subspace S is then called an eigenspace, and any nonzero x ∈ S is an

eigenvector.

We denote the set of all eigenvalues (the spectrum) of A by Λ(A) ⊂ C
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Eigenvalue Decomposition

An eigenvalue decomposition of A ∈ Cm×m is a factorization

A = XΛX−1

where X is non-singular, and Λ is diagonal.

Note:
A = XΛX−1 ⇔ AX = XΛ

thus, the jth column of X is an eigenvector of A and the jth entry of Λ is
the corresponding eigenvalue.
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Geometric Multiplicity

Given an eigenvalue λ ∈ C.

• We denote Eλ the corresponding eigenspace

• Eλ is an A-invariant subspace, i.e.,

AEλ ⊆ Eλ

• dim(Eλ) is the geometric multiplicity of λ

• Note:
dim(Eλ) = dim(ker(A− λI))
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Characteristic Polynomial

Given A ∈ Cm×m.

• We call
pA(z) = det(zI−A)

the characteristic polynomial

• λ ∈ C is an eigenvalue of A iff pA(λ) = 0

⇒ Even if A ∈ Rm×m, λ may be complex!
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Algebraic multiplicity

• Fundamental theorem of algebra:

pA(z) = (z − λ1)(z − λ2) · · · (z − λm)

for some λj ∈ C.

• The algebraic multiplicity of λ is its multiplicity as a root of pA

• If A ∈ Cm×m, then A has m eigenvalues, counted with algebraic
multiplicity.

⇒ Every matrix has at least one eigenvalue
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Similarity Transformations

Let X ∈ Cm×m be non-singular

• The map A 7→ XAX−1 is called a similarity transformation of A

• Two matrices A, B ∈ Cm×m iff ∃X non-singular s.t.

B = XAX−1

• Let X be non-singular, then A and XAX−1 have the same

i) characteristic polynomial
ii) eigenvalues
iii) algebraic and geometric multiplicities

Theorem:

The algebraic multiplicity of an eigenvalue λ is at least as great as its
geometric multiplicity.
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Diagonalizability

• A is called non-defective if the algebraic multiplicity equals the
geometric multiplicity for all eigenvalues

• A ∈ Cm×m is non-defective iff it has an eigenvalue decomposition.
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Computing Eigenvalues
Eigenvalues correspond to roots of a polynomial

There exists no closed form for roots of polynomials of degree ≥ 5

How do we compute the eigenvalues?

We compute eigenvalue revealing decompositions:

• eigenvalue decomposition

• unitary eigenvalue decomposition

• Schur decomposition (Schur factorization)

General procedure:
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 1.−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

 2.−→


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×


Phase 1: Direct computation

Phase 2: Iterative computation
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Hessenberg Form

Q: Why compute the Hessenberg form?
⇒ “Can’t we just use Householder like for linear systems?”
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Hessenberg Form

Q: Why compute the Hessenberg form?
No, we cannot:

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 Q∗
1 ·−→


× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

 ·Q1−→


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
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Hessenberg Form

Q: Why compute the Hessenberg form?
(Upper) Hessenberg form is close to diagonal ⇒ improves the scaling!
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Hessenberg Form

Q: How do we compute the Hessenberg form?
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Hessenberg Form

Q: How do we compute the Hessenberg form?

Householder!
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×


A

Q∗
1 ·−→


× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


Q∗

1A

·Q1−→


× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


Q∗

1AQ1
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Hessenberg Form

Q: How do we compute the Hessenberg form?


× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×


Q∗

1AQ1

Q∗
2 ·−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×


Q∗

2Q
∗
1AQ1

·Q2−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×


Q∗

2Q
∗
1AQ1Q2
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Hessenberg Form

Q: How do we compute the Hessenberg form?


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×


Q∗

2Q
∗
1AQ1Q2

Q∗
3 ·−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×


Q∗

3Q
∗
2Q

∗
1AQ1Q2

·Q2−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×


Q∗

3Q
∗
2Q

∗
1︸ ︷︷ ︸

=Q∗

AQ1Q2Q3︸ ︷︷ ︸
=Q

=H
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Numerical methods

Power Iteration:

v(0) some vector with ‖v(0)‖ = 1

for k = 1,2,...

w = Av(k−1)

v(k) = w/‖w‖
λ(k) =

(
v(k)

)>
Av(k)
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Numerical methods

Inverse Iteration:

v(0) some vector with ‖v(0)‖ = 1

for k = 1,2,...

Solve (A− µI)w = v(k−1)

v(k) = w/‖w‖
λ(k) =

(
v(k)

)>
Av(k)
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Numerical methods

Rayleigh Quotient Iteration:

v(0) some vector with ‖v(0)‖ = 1

λ(0) =
(
v(0)

)>
Av(0)

for k = 1,2,...

Solve (A− λ(k−1)I)w = v(k−1)

v(k) = w/‖w‖
λ(k) =

(
v(k)

)>
Av(k)
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Numerical methods

“Pure” QR algorithm (without shift):

A(0) = A

for k = 1,2,...

Q(k)R(k) = A(k−1)

A(k) = R(k)Q(k)
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Numerical methods

“Practical” QR algorithm (with shift):(
Q(0)

)>
A(0)Q(0) = A

for k = 1,2,...

Pick µ(k) e.g. µ(k) = A
(k−1)
m,m

Q(k)R(k) = A(k−1) − µ(k)I
A(k) = R(k)Q(k) + µ(k)I

If any off-diag. element Aj,j+1 us sufficiently small:

Set Aj,j+1 = Aj+1,j = 0[
A1 0
0 A2

]
= A(k)

and apply the QR decomposition to A1 and A2.
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Numerical methods

Jacobi

Bisection
...


