Sketching Eigenvalue Problems Lecture 21

F. M. Faulstich

04/09/2024

Eigenvalue problem with sketching

- Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be symmetric
- Goal: Estimating (parts of) the spectrum via sketching
- Rayleigh-Ritz: We have seen that if $\mathbf{A} \in \mathbb{H}_{n}$ then

$$
\lambda_{\min }=\min _{\|x\|=1} x^{*} \mathbf{A} x
$$

- Common situation: m is way to large! but we have an idea "where" to look for the eigenvalues

$$
\mathbf{B} \in \mathbb{R}^{m \times d}
$$

is an approximate space over which we seek to find eigenpairs

Rayleigh-Ritz (Galerkin projection)

- Given $\mathbf{B}=\left[\mathbf{b}_{1}|\ldots| \mathbf{b}_{d}\right] \in \mathbb{R}^{m \times d}$
- Seeking eigenpairs in $\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$, i.e.,

$$
\mathbf{A B} \mathbf{y}=\lambda \mathbf{B y}
$$

with $\mathbf{A B y}-\lambda \mathbf{B y}=\mathbf{r} \perp \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$

- Find $\mathbf{y} \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{C}$ s.t.

$$
\mathbf{B}^{\top}(\mathbf{A B y}-\lambda \mathbf{B y})=\mathbf{0}
$$

NOTE: Here $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right\}$ are assumed to be orthonormal

- The above can be generalized to the eigenvalue problem

$$
\mathbf{M}_{*} \mathbf{y}=\mathbf{B}^{\dagger} \mathbf{A B y}=\lambda \mathbf{y}
$$

where $\mathbf{y} \neq 0$ and $\lambda \in \mathbb{C}$

Rayleigh-Ritz

- Let $\left(\mathbf{y}_{*}, \lambda_{*}\right)$ be an eigenpair of \mathbf{M}_{*}. Then

$$
\left\|\mathbf{A B} \mathbf{y}_{*}-\lambda \mathbf{B} \mathbf{y}_{*}\right\|_{2}=\left\|\left(\mathbf{A B}-\mathbf{B M}_{*}\right) \mathbf{y}_{*}\right\|_{2}
$$

- This yields ${ }^{1}$

$$
\min _{\mathbf{M} \in \mathbb{C}^{d \times d}}\|\mathbf{A B}-\mathbf{B M}\|_{F}
$$

Rayleigh-Ritz - algorithmically

- We need to construct B
- Krylov subspace approach:
$\mathbf{r} \leftarrow$ Initial residual
$\mathbf{b}_{1}=\mathbf{r} /\|\mathbf{r}\|$
For $p=1$ to $d-1$:

$$
\begin{aligned}
& \mathbf{w}=\left(\mathbf{I}-\mathbf{B}_{p-1} \mathbf{B}_{p-1}^{*}\right) \mathbf{b}_{p-1} \\
& \mathbf{b}_{p}=\mathbf{w} /\|\mathbf{w}\| \\
& \mathbf{B}_{p}=\left[\mathbf{B}_{p-1} \mid \mathbf{b}_{p}\right]
\end{aligned}
$$

- Then apply QR algorithm to compute the spectrum: $\mathbf{A}^{(0)}=\mathbf{B}^{\top} \mathbf{A B}$
for $k=1,2, \ldots$

$$
\begin{aligned}
& \mathbf{Q}^{(k)} \mathbf{R}^{(k)}=\mathbf{A}^{(k-1)} \\
& \mathbf{A}^{(k)}=\mathbf{R}^{(k)} \mathbf{Q}^{(k)}
\end{aligned}
$$

Let's put this to the test ...

Computational setup:

- Consider the 2D Laplacian approximated using finite differences
- Recall 1D-Laplacian

$$
\mathbf{L}_{1}=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)
$$

- Then in 2D

$$
\mathbf{L}_{1}=\mathbf{L}_{1} \otimes \mathbf{I}+\mathbf{I} \otimes \mathbf{L}_{1}
$$

Sketching Rayleigh-Ritz

- We want to sketch

$$
\min _{\mathbf{M} \in \mathbb{C}^{d \times d}}\|\mathbf{A B}-\mathbf{B M}\|_{F}
$$

- Consider the sketch $\mathbf{S} \in \mathbb{C}^{s \times m}$ then

$$
\begin{equation*}
\min _{\mathbf{M} \in \mathbb{C}^{d \times d}}\|\mathbf{S}(\mathbf{A B}-\mathbf{B M})\|_{F} \tag{1}
\end{equation*}
$$

- Sketching Rayleigh-Ritz (sRR) then finds $\hat{\mathbf{M}}_{*}$ minimizing (1), i.e.,

$$
\mathbf{M}_{*}=(\mathbf{S B})^{\dagger} \mathbf{S A B}
$$

- $s=4 d$ results in distortion $\varepsilon=1 / \sqrt{2}$ for the range of $[\mathbf{A B}, \mathbf{B}]$.

Let's try to make this better I

- Apply different sketches:
i) SRTT:
$\mathbf{G} \in \mathbb{R}^{n \times m}$
$\boldsymbol{\sigma} \in \mathbb{R}^{n}$ i.i.d. Rademacher
$\mathbf{i} \in \mathbb{R}^{d}$ random selection index
$\mathbf{F}=\boldsymbol{\sigma} . * \mathbf{G}$
$\mathbf{F}=\operatorname{dct}(\mathbf{F})$ discrete cosine transform (column wise applied)
$\mathbf{F}=\mathbf{F}[\mathbf{i},:] / \sqrt{n / d}$
ii) SSE:
$\zeta=8$
$\mathbf{G} \in \mathbb{R}^{n \times m}$
For $i=1$ to m
$\mathbf{i} \in \mathbb{R}^{\zeta}$ random selection index
$\sigma \in \mathbb{R}^{d}$ i.i.d. Rademacher
$\mathbf{S}[\mathbf{i}, i]=\boldsymbol{\sigma} / \sqrt{\zeta}$

Let's try to make this better II

- Remove the Pseudo potential:

Note that $[\mathbf{U}, \mathbf{T}]=\mathrm{qr}(\mathbf{S B})$ yields

$$
\mathbf{M}_{*}=\mathbf{T}^{-1} \mathbf{U}^{*} \mathbf{S A B}
$$

- How to invert T?
\rightarrow Back substitution
- $\mathbf{U} \in \mathbb{R}^{m \times n}$ with $\mathbf{U}_{i j}=0$ for $i>j$ and $m \geq n$
- Solving $\mathbf{U x}=\mathbf{b}$ from "bottom up yields"

$$
\begin{aligned}
\mathbf{x}_{n} & =\mathbf{b}_{n} / \mathbf{U}_{n, n} \\
\mathbf{x}_{n-1} & =\left(\mathbf{b}_{n-1}-\mathbf{U}_{n-1, n} * \mathbf{x}_{n}\right) / \mathbf{U}_{n-1, n-1} \\
& \vdots \\
\mathbf{x}_{i} & =\left(\mathbf{b}_{i}-\mathbf{U}_{i, i+1: n} * \mathbf{x}_{i+1: n}\right) / \mathbf{U}_{i, i}
\end{aligned}
$$

