Krylov Subspace Methods - Linear Systems -
 Lecture 22

F. M. Faulstich

04/16/2024

Krylov Subspace Methods

- Depending on the problem different names arise

$A=A^{*}$| | $A x=b$ |
| :---: | :---: |
| CG | $A x=\lambda x$ |
| $A \neq A^{*}$ | Lanczos |
| | GMRES
 CGN
 BCG et al. |

Quadratic Test function

- Consider the quadratic test function: Let $0 \prec \mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{x} \in \mathbb{R}^{n}$

$$
\phi(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

- The gradient of ϕ is given by

$$
\nabla \phi(\mathbf{x})=\mathbf{A x}-\mathbf{b}
$$

Hence, at the critical point \mathbf{x}_{*} we have

$$
\nabla \phi\left(\mathbf{x}_{*}\right)=0 \quad \Leftrightarrow \quad \mathbf{A} \mathbf{x}_{*}=\mathbf{b}
$$

- Is this critical point unique? - Yes!
i) Note that

$$
\nabla^{2} \phi(\mathbf{x})=\mathbf{A} \succ \mathbf{0}
$$

$\Rightarrow \mathbf{x}_{*}$ is a minimum
ii) $\nabla^{2} \phi(\mathrm{x})$ is constant! $\Rightarrow \phi$ is convex.

Line Search Methods

- Line search methods are iterative optimization method
- Idea:

Start with an initial guess \mathbf{x}_{0}
Update as

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}
$$

where \mathbf{p}_{k} is the search direction and α_{k} is the step length

Steepest Descent

- Remember

$$
\nabla \phi(\mathbf{x})=\mathbf{A x}-\mathbf{b}
$$

points towards largest increase of ϕ in \mathbf{x}.
\Rightarrow Search direction should be $\mathbf{p}_{k}=-\nabla \phi\left(\mathbf{x}_{k}\right)=\mathbf{r}\left(\mathbf{x}_{k}\right)$

- What about the step length?

Idea: Walk until we no longer descend!

$$
0 \stackrel{!}{=} \partial_{\alpha_{k}} \phi\left(\mathbf{x}_{k+1}\right) \quad \Rightarrow \quad \alpha_{k}=\frac{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}}{\mathbf{r}_{k}^{\top} \mathbf{A r}_{k}}
$$

Convergence

\Rightarrow "ZigZag" convergence cannot be optimal!

Question: Can we use information from the previous iterations?

A-conjugate direction

- We say a set of vectors $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{k}\right\}$ are conjugate w.r.t. the SPD matrix \mathbf{A} iff

$$
\mathbf{p}_{i}^{\top} \mathbf{A} \mathbf{p}_{j}=0 \quad \forall i \neq j
$$

- Claim: n A-conjugate vectors form a basis of \mathbb{R}^{n}.
- Then

$$
\mathbf{x}_{*}=\sum_{i=1}^{n} c_{i} \mathbf{p}_{i} \Rightarrow \mathbf{A} \mathbf{x}_{*}=\sum_{i=1}^{n} c_{i} \mathbf{A} \mathbf{p}_{i}
$$

hence

$$
\mathbf{p}_{k}^{\top} \mathbf{b}=\sum_{i=0}^{n-1} c_{i} \mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{i}=c_{k} \mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{k} \quad \Rightarrow \quad c_{k}=\frac{\mathbf{p}_{k}^{\top} \mathbf{b}}{\mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{k}}
$$

- If we have sequence of \mathbf{A}-conjugate vecorts we can solve for \mathbf{x}_{*}

A-conjugate vectors

How do we find the set of \mathbf{A}-conjugate vectors?

A-conjugate vectors

Zeroth Iteration:

- We start with $\mathbf{x}_{0}=\mathbf{0} \in \mathbb{R}^{n}$
- Compute the residual

$$
\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}
$$

- Compute the search direction

$$
\mathbf{p}_{0}=-\nabla \phi\left(\mathbf{x}_{0}\right)=\mathbf{r}_{0}
$$

- Compute the step length

$$
\alpha_{0}=\frac{\mathbf{p}_{0}^{\top} \mathbf{r}_{0}}{\mathbf{p}_{0}^{\top} \mathbf{A} \mathbf{p}_{0}}
$$

- Update the iterate

$$
\mathbf{x}_{1}=\mathbf{x}_{0}+\alpha_{0} \mathbf{p}_{0}
$$

A-conjugate vectors

$\mathrm{k} t h$ iteration:

- Compute the residual

$$
\mathbf{r}_{k}=\mathbf{b}-\mathbf{A} \mathbf{x}_{k}=-\nabla \phi\left(\mathbf{x}_{k}\right)
$$

- Make the gradient conjugate to the previous $\left\{\mathbf{p}_{0}, \ldots, \mathbf{p}_{k-1}\right\}$

$$
\mathbf{p}_{k}=\mathbf{r}_{k}-\sum_{i=0}^{k-1} \frac{\mathbf{p}_{i}^{\top} \mathbf{A} \mathbf{r}_{k}}{\mathbf{p}_{i}^{\top} \mathbf{A} \mathbf{p}_{i}} \mathbf{p}_{i}
$$

- Compute the step length

$$
\alpha_{k}=\frac{\mathbf{p}_{k}^{\top} \mathbf{r}_{k}}{\mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{k}}
$$

- Update the iterate

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}
$$

Computation of the search direction

- Let's take a closer look at the search direction

$$
\mathbf{p}_{k}=\mathbf{r}_{k}-\sum_{i=0}^{k-1} \frac{\mathbf{p}_{i}^{\top} \mathbf{A} \mathbf{r}_{k}}{\mathbf{p}_{i}^{\top} \mathbf{A} \mathbf{p}_{i}} \mathbf{p}_{i}
$$

- Better to impose conjugation explicitly:

$$
\mathbf{p}_{k}=\mathbf{r}_{k}-\beta_{k} \mathbf{p}_{k-1}
$$

Then $\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{p}_{k}=0$ implies

$$
\beta_{k}=\frac{\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{r}_{k}}{\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{p}_{k-1}}
$$

Note that

$$
\mathbf{r}_{k}^{\top} \mathbf{A} \mathbf{p}_{k-1}=-\frac{1}{\alpha_{k-1}} \mathbf{r}_{k}^{\top} \mathbf{r}_{k} \quad \text { and } \quad \mathbf{p}_{k}^{\top} \mathbf{A} \mathbf{p}_{k}=\frac{1}{\alpha_{k}} \mathbf{r}_{k}^{\top} \mathbf{r}_{k}
$$

Hence

$$
\beta_{k}=-\frac{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}}{\mathbf{r}_{k-1}^{\top} \mathbf{r}_{k-1}}
$$

Conjugate Gradient Algorithm

Input: A
Output: x approximate solution to $\mathbf{A} \mathbf{x}_{*}=\mathbf{b}$
$\mathrm{x}_{0}=\mathbf{0}$
$\mathbf{p}_{0}=\mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}$
For $\mathrm{k}=1$...

$$
\begin{aligned}
& \alpha_{k-1}=\frac{\mathbf{p}_{k-1}^{\top} \mathbf{r}_{k-1}}{\mathbf{p}_{k-1}^{\top} \mathbf{A} \mathbf{p}_{k-1}} \\
& \mathbf{x}_{k}=\mathbf{x}_{k-1}+\alpha_{k-1} \mathbf{p}_{k-1} \\
& \mathbf{r}_{k}=\mathbf{b}-\mathbf{A} \mathbf{x}_{k} \\
& \beta_{k}=-\frac{\mathbf{r}_{k}^{\top} \mathbf{r}_{k}}{\mathbf{r}_{k-1}^{\top} \mathbf{r}_{k-1}} \\
& \mathbf{p}_{k}=\mathbf{r}_{k}-\beta_{k} \mathbf{p}_{k-1}
\end{aligned}
$$

Why is this a Krylov subspace method?

- Claim: $\mathbf{x}_{k} \in \mathcal{K}_{k}=\operatorname{span}\left(\mathbf{b}, \mathbf{A b}, \ldots, \mathbf{A}^{k-1} \mathbf{b}\right)$
- Claim: $\mathbf{r}_{k} \perp \mathcal{K}_{k}$
- Theorem:
$\mathbf{x}_{k} \in \mathcal{K}_{k}$ is the unique point that minimizes $\left\|\mathbf{e}_{k}\right\|_{A}$ with $\mathbf{e}_{k}=\mathbf{x}_{*}-\mathbf{x}_{k}$ and $\left\|\mathbf{e}_{k}\right\| \leq\left\|\mathbf{e}_{k-1}\right\|$ and $\mathbf{e}_{\ell}=0$ for some $\ell \leq n$.

