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Conjugate Gradient

• Method of steepest descent

⇒ Rewrite the problem as minimization:

min
x∈Rn

1

2
x>Ax− x>b

for A ∈ Hn and A � 0.
⇒ “walk” in the direction of the steepest descent
⇒ Very intuitive but – in general – not optimal

• Different idea:
A-conjugate the gradient w.r.t. the previous search directions
⇒ conjugate gradient (CG) method

• CG is a Krylov subspace method, i.e., xk ∈ Kk
• The search direction at kth iteration is optimal

‖x∗ − xk‖A = min
x∈Kk

‖x∗ − x‖A

and ‖x∗ − x`‖A = 0 for some ` ≤ n
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Generalized Minimal Residual Method

Question: What if A ∈ Rn×n is a general matrix?
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Generalized Minimal Residual Method

• Following the idea of Krylov subspace methods we seek

min
x∈x0+Kk(A,r0)

‖b−Ax‖

where Kk(A, r0) = span(r0,Ar0, ...,A
k−1r0)

(Note that if x0 = 0, we have r0 = b)

• Assume we have an orthonormal basis {v1, ...,vk} of Kk(A, r0). Then

x = x0 + Vky

for some y ∈ Rk, with Vk = [v1|...|vk] ∈ Rn×k and

‖b−Ax‖ = ‖b−A(x0 + Vky)‖ = ‖r0 −AVky‖

hence
min

x∈x0+Kk(A,r0)
‖b−Ax‖ = min

y∈Rk
‖r0 −AVky‖

⇒ Ordinary least-squares problem!
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Generalized Minimal Residual Method

• NOTE: This method needs an orthonormal basis of Kk(A, r0)
⇒ Vulnerable to an imperfect basis caused by computational errors

Different approaches to computing this basis lead to different “flavors” of
GMRES
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GMRES with Arnoldi (Gram-Schmidt)

• Arnoldi process:
r0 ← Initial residual
v1 = r0/‖r0‖
V1 = [v1]
For p = 2 to k:

wp = (I−Vp−1V
>
p−1)Avp−1

vp = wp/‖wp‖
Vp = [Vp−1|vp]
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GMRES with Arnoldi (Gram-Schmidt)

• This yields
AVk = Vk+1Hk

with

Hk =



h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k

0 h3,2 h3,3
...

...
. . .

. . .

0 hk,k−1 hk,k
0 0 hk+1,k
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GMRES with Arnoldi (Gram-Schmidt)
• Note that

r0 = ‖r0‖v1 =: βv1

• Hence

‖r0−AVky‖ = ‖r0−Vk+1Hky‖ = ‖Vk+1(βe1−Hky)‖ = ‖βe1−Hky‖

• Thus we seek to solve

min
y∈Rk

‖βe1 −Hky‖

Using QR factorization of Hk = QkRk we get

min
y∈Rk

‖Qk(βQ
>
k e1 −Rky)‖ = min

y∈Rk
‖gk −Rky‖

The minimum is obtained at [Rky]ki=1 = [gk]
k
i=1. Hence

min
y∈Rk

‖gk −Rky‖ = [gk]k+1
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Make GMRES more stable

• Gram-Schmidt may suffer from numerical instabilities!

• Alternatives exist:

modified Gram Schmidt
double Gram-Schmidt
Given’s rotations
Householder
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Computational comparison

• N. I. Dravins, Numerical Implementations of the GMRES (2015):
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GMRES with Lanczos recurrence

• We assume A ∈ Hn

• Arnoldi process simplifies dramatically:
In every iteration

wp = (I− vp−1v
>
p−1 − vp−2v

>
p−2)Avp−1

• The Lanczos basis yields

V>k AVk = Jk

where Jk is tri-diagonal
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GMRES with Chebyshev recurrence

• Sometimes orthogonalization is infeasible all together

• Assume Λ(A) ∈ [c± δx,±δy], and ρ := max{δx, δy}
• Chebyshev recurrence:

v1 = r0/‖r0‖
v2 = (2ρ)−1(A− cI)v1

for p = 3 to k:

vp = 1
ρ

(
(A− cI)vp−1 −

δ2x−δ2y
4ρ vp−2

)
vp−2 = vp−2/‖vp−2‖

vk−1 = vk−1/‖vk−1‖
vk = vk/‖vk‖
• Good idea when dealing with large, sparse linear systems, where the

coefficient matrix may be ill-conditioned

• Requires some estimate of the spectrum
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GMRES with sketching

• Remember, we basically want to solve

min
y∈Rk

‖r0 −AVky‖

at every iteration

• As a least-squares problem it is a natural candidate for sketching

min
y∈Rk

‖S(r0 −AVky)‖

where S ∈ Rd×n is the sketching matrix

• Gaussian
• SRTT
• SSE

...
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Comparison sGMRES vs GMRES1

• Comparison of performance of MATLAB GMRES (with and without restarting)
against the sGMRES algorithm (with 2-partial orthogonalization or the
Chebyshev basis)

• Sparse linear system Ax = f , A is 2D Laplacian with n = 106.

• Left: Relative residual and condition number κ2(AB) of the reduced matrix
associated with the k-truncated Arnoldi basis.

• Right: Total runtime including basis generation.

1Nakatsukasa and Tropp, arXiv:2111.00113
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Course recap
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What we have seen ...

Randomized algorithms come in various flavors

• Random initial guess

• Application of random vectros/matrices

• Stochastic means to access quantities with high probability
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What we have seen ...

Integration

• Riemann sums (Left, Right, Upper, Lower, Middle)

• Trapezoidal rule

• Simpson

• Variational Monte Carlo

• Markov Chain Monte Carlo (MCMC)
⇒ Multiple techniques to speed this up!
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What we have seen ...

Trace estimation

• Girard-Hutchinson

• Hutch++

• XTrace

• XNysTrace

• Quantum Trace Estimation
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What we have seen ...

Sketching

• Gaussian Embedding

• Subsampled Randomized Trigonometric Transforms (SRTT)

• Sparse Sign Embeddings (SSE)

• SSE with Cauchy random variables
• SSE with exponential random variables

• Adaptive sampling

Application to least-squares problems

• Sketch-and-solve

• Iterative sketching
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What we have seen ...

Guest Lecture on sketching high-dimensional probability distributions

• Introduction to inherent high-dimensional problems

• Introduction to tensors

• Continuous sketching
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What we have seen ...

Matrix approximation (revisited)

• Low-rank approximation via: QR, CP-QR and ID/skeletonization

• SVD and rSVD

• Matrix Monte Carlo

• Matrix sketching
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What we have seen ...

Multi-linear algebra

• Detailed introduction to tensor spaces and tensor algebra

• Tensor diagrams

• Tensor product approximations

• Canonical Polyadic (CP) Decomposition
• Tucker Decomposition
• Tensor Train (TT) Decomposition
• Hierarchical Tucker (HT) Decomposition

• Generalizations of SVD

• (T)HOSVD
• S(T)HOSDV
• r-STHOSVD
• sketched-STHOSVD
• sub-sketch-STHOSVD

• Sketching TT



12/1

What we have seen ...

Eigenvalue problems

• Eigenvalue revealing decompositions

• eigenvalue decomposition
• unitary eigenvalue decomposition
• Schur decomposition

• Two-step numerical procedure

• Householder for upper Hessenbergform
• Power iteration
• Inverse iteration
• “Pure” QR algorithm (without shift)
• “Practical” QR algorithm (with shift)

• Krylov methods for eigenvalue problems

• Rayleigh-Ritz (RR)/ Arnoldi method
• sketched-RR
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What we have seen ...

Krylov methods for linear systems

• Steepest descent

• Conjugate Gradient (CG)

• Optimality of CG

• Generalized Minimal Residual Method (GMRES)

• Arnoldi (Gram-Schmidt, Double Gram-Schmidt, Householder, ... )
• Lanczos
• Chebyshev recurrence

• sketched GMRES
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Conclusion

• Randomized techniques are a powerful tool for certain large problems
in numerical linear algebra

• Randomized techniques are no silver bullet

• Randomized techniques often require careful implementation to be
fully leveraged
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Thank you for your attention


