Sketching Krylov Subspace Methods – Linear Systems – Lecture 23

F. M. Faulstich

04/19/2024

• Method of steepest descent

• Method of steepest descent

 \Rightarrow Rewrite the problem as minimization:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{b}$$

for $\mathbf{A} \in \mathbb{H}_n$ and $\mathbf{A} \succ \mathbf{0}$.

• Method of steepest descent

 \Rightarrow Rewrite the problem as minimization:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{b}$$

for $\mathbf{A} \in \mathbb{H}_n$ and $\mathbf{A} \succ \mathbf{0}$.

- \Rightarrow "walk" in the direction of the steepest descent
- \Rightarrow Very intuitive but in general not optimal

• Method of steepest descent

 \Rightarrow Rewrite the problem as minimization:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{b}$$

for $\mathbf{A} \in \mathbb{H}_n$ and $\mathbf{A} \succ \mathbf{0}$.

- \Rightarrow "walk" in the direction of the steepest descent
- \Rightarrow Very intuitive but in general not optimal
- Different idea:

• Method of steepest descent

 \Rightarrow Rewrite the problem as minimization:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{b}$$

for $\mathbf{A} \in \mathbb{H}_n$ and $\mathbf{A} \succ \mathbf{0}$.

 \Rightarrow "walk" in the direction of the steepest descent

 \Rightarrow Very intuitive but – in general – not optimal

• Different idea:

A-conjugate the gradient w.r.t. the previous search directions \Rightarrow conjugate gradient (CG) method

• Method of steepest descent

 \Rightarrow Rewrite the problem as minimization:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{b}$$

for $\mathbf{A} \in \mathbb{H}_n$ and $\mathbf{A} \succ \mathbf{0}$.

 \Rightarrow "walk" in the direction of the steepest descent

 \Rightarrow Very intuitive but – in general – not optimal

• Different idea:

A-conjugate the gradient w.r.t. the previous search directions \Rightarrow conjugate gradient (CG) method

- CG is a Krylov subspace method, i.e., $\mathbf{x}_k \in \mathcal{K}_k$
- The search direction at kth iteration is optimal

$$\|\mathbf{x}_* - \mathbf{x}_k\|_{\mathbf{A}} = \min_{\mathbf{x} \in \mathcal{K}_k} \|\mathbf{x}_* - \mathbf{x}\|_{\mathbf{A}}$$

and $\|\mathbf{x}_* - \mathbf{x}_\ell\|_{\mathbf{A}} = 0$ for some $\ell \leq n$

Generalized Minimal Residual Method

Question: What if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a general matrix?

Generalized Minimal Residual Method

• Following the idea of Krylov subspace methods we seek

$$\min_{\mathbf{x}\in\mathbf{x}_0+\mathcal{K}_k(\mathbf{A},\mathbf{r}_0)} \left\|\mathbf{b}-\mathbf{A}\mathbf{x}\right\|$$

where $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0) = \operatorname{span}(\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, ..., \mathbf{A}^{k-1}\mathbf{r}_0)$ (Note that if $\mathbf{x}_0 = \mathbf{0}$, we have $\mathbf{r}_0 = \mathbf{b}$)

• Assume we have an orthonormal basis $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ of $\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)$. Then

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{V}_k \mathbf{y}$$

for some $\mathbf{y} \in \mathbb{R}^k$, with $\mathbf{V}_k = [\mathbf{v}_1|...|\mathbf{v}_k] \in \mathbb{R}^{n \times k}$ and

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\| = \|\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{V}_k \mathbf{y})\| = \|\mathbf{r}_0 - \mathbf{A}\mathbf{V}_k \mathbf{y}\|$$

hence

$$\min_{\mathbf{x}\in\mathbf{x}_0+\mathcal{K}_k(\mathbf{A},\mathbf{r}_0)} \|\mathbf{b}-\mathbf{A}\mathbf{x}\| = \min_{\mathbf{y}\in\mathbb{R}^k} \|\mathbf{r}_0-\mathbf{A}\mathbf{V}_k\mathbf{y}\|$$

 \Rightarrow Ordinary least-squares problem!

Generalized Minimal Residual Method

NOTE: This method needs an orthonormal basis of K_k(A, r₀)
⇒ Vulnerable to an imperfect basis caused by computational errors

Different approaches to computing this basis lead to different "flavors" of GMRES

GMRES with Arnoldi (Gram-Schmidt)

• Arnoldi process: $\mathbf{r}_0 \leftarrow \text{Initial residual}$ $\mathbf{v}_1 = \mathbf{r}_0 / \|\mathbf{r}_0\|$ $\mathbf{V}_1 = [\mathbf{v}_1]$ For p = 2 to k: $\mathbf{w}_p = (\mathbf{I} - \mathbf{V}_{p-1}\mathbf{V}_{p-1}^{\top})\mathbf{A}\mathbf{v}_{p-1}$ $\mathbf{v}_p = \mathbf{w}_p / \|\mathbf{w}_p\|$ $\mathbf{V}_p = [\mathbf{V}_{p-1}|\mathbf{v}_p]$ GMRES with Arnoldi (Gram-Schmidt)

• This yields

 $\mathbf{A}\mathbf{V}_k = \mathbf{V}_{k+1}\mathbf{H}_k$

with

$$\mathbf{H}_{k} = \begin{bmatrix} h_{1,1} & h_{1,2} & \cdots & h_{1,k} \\ h_{2,1} & h_{2,2} & \cdots & h_{2,k} \\ 0 & h_{3,2} & h_{3,3} & \vdots \\ \vdots & \ddots & \ddots & \\ 0 & & h_{k,k-1} & h_{k,k} \\ 0 & & 0 & h_{k+1,k} \end{bmatrix}$$

GMRES with Arnoldi (Gram-Schmidt)

• Note that

$$\mathbf{r}_0 = \|\mathbf{r}_0\|\mathbf{v}_1 =: \beta \mathbf{v}_1$$

• Hence

 $\|\mathbf{r}_0 - \mathbf{A} \mathbf{V}_k \mathbf{y}\| = \|\mathbf{r}_0 - \mathbf{V}_{k+1} \mathbf{H}_k \mathbf{y}\| = \|\mathbf{V}_{k+1} (\beta \mathbf{e}_1 - \mathbf{H}_k \mathbf{y})\| = \|\beta \mathbf{e}_1 - \mathbf{H}_k \mathbf{y}\|$

• Thus we seek to solve

$$\min_{\mathbf{y}\in\mathbb{R}^k}\|\beta\mathbf{e}_1-\mathbf{H}_k\mathbf{y}\|$$

Using QR factorization of $\mathbf{H}_k = \mathbf{Q}_k \mathbf{R}_k$ we get

$$\min_{\mathbf{y} \in \mathbb{R}^k} \left\| \mathbf{Q}_k (\beta \mathbf{Q}_k^\top \mathbf{e}_1 - \mathbf{R}_k \mathbf{y}) \right\| = \min_{\mathbf{y} \in \mathbb{R}^k} \left\| \mathbf{g}_k - \mathbf{R}_k \mathbf{y} \right\|$$

The minimum is obtained at $[\mathbf{R}_k \mathbf{y}]_{i=1}^k = [\mathbf{g}_k]_{i=1}^k$. Hence

$$\min_{\mathbf{y}\in\mathbb{R}^k}\|\mathbf{g}_k-\mathbf{R}_k\mathbf{y}\|=[\mathbf{g}_k]_{k+1}$$

Make GMRES more stable

- Gram-Schmidt may suffer from numerical instabilities!
- Alternatives exist:

modified Gram Schmidt double Gram-Schmidt Given's rotations Householder

Computational comparison

• N. I. Dravins, Numerical Implementations of the GMRES (2015):

GMRES with Lanczos recurrence

- We assume $\mathbf{A} \in \mathbb{H}_n$
- Arnoldi process simplifies dramatically: In every iteration

$$\mathbf{w}_p = (\mathbf{I} - \mathbf{v}_{p-1}\mathbf{v}_{p-1}^{\top} - \mathbf{v}_{p-2}\mathbf{v}_{p-2}^{\top})\mathbf{A}\mathbf{v}_{p-1}$$

• The Lanczos basis yields

$$\mathbf{V}_k^\top \mathbf{A} \mathbf{V}_k = \mathbf{J}_k$$

where \mathbf{J}_k is tri-diagonal

GMRES with Chebyshev recurrence

- Sometimes orthogonalization is infeasible all together
- Assume $\Lambda(\mathbf{A}) \in [c \pm \delta_x, \pm \delta_y]$, and $\rho := \max\{\delta_x, \delta_y\}$
- Chebyshev recurrence:

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{r}_0 / \| \mathbf{r}_0 \| \\ \mathbf{v}_2 &= (2\rho)^{-1} (\mathbf{A} - c\mathbf{I}) \mathbf{v}_1 \\ \text{for } p &= 3 \text{ to } k: \\ \mathbf{v}_p &= \frac{1}{\rho} \left((\mathbf{A} - c\mathbf{I}) \mathbf{v}_{p-1} - \frac{\delta_x^2 - \delta_y^2}{4\rho} \mathbf{v}_{p-2} \right) \\ \mathbf{v}_{p-2} &= \mathbf{v}_{p-2} / \| \mathbf{v}_{p-2} \| \\ \mathbf{v}_{k-1} &= \mathbf{v}_{k-1} / \| \mathbf{v}_{k-1} \| \\ \mathbf{v}_k &= \mathbf{v}_k / \| \mathbf{v}_k \| \end{aligned}$$

- Good idea when dealing with large, sparse linear systems, where the coefficient matrix may be ill-conditioned
- Requires some estimate of the spectrum

GMRES with sketching

• Remember, we basically want to solve

$$\min_{\mathbf{y} \in \mathbb{R}^k} \|\mathbf{r}_0 - \mathbf{A} \mathbf{V}_k \mathbf{y}\|$$

at every iteration

• As a least-squares problem it is a natural candidate for sketching

$$\min_{\mathbf{y} \in \mathbb{R}^k} \left\| \mathbf{S}(\mathbf{r}_0 - \mathbf{A} \mathbf{V}_k \mathbf{y}) \right\|$$

where $\mathbf{S} \in \mathbb{R}^{d \times n}$ is the sketching matrix

- Gaussian
- SRTT
- SSE

Comparison sGMRES vs $GMRES^1$

- Comparison of performance of MATLAB GMRES (with and without restarting) against the sGMRES algorithm (with 2-partial orthogonalization or the Chebyshev basis)
- Sparse linear system $\mathbf{A}\mathbf{x} = \mathbf{f}$, \mathbf{A} is 2D Laplacian with $n = 10^6$.
- Left: Relative residual and condition number $\kappa_2(AB)$ of the reduced matrix associated with the k-truncated Arnoldi basis.
- Right: Total runtime including basis generation.

¹Nakatsukasa and Tropp, arXiv:2111.00113

Course recap

Randomized algorithms come in various flavors

- Random initial guess
- Application of random vectros/matrices
- Stochastic means to access quantities with high probability

Integration

- Riemann sums (Left, Right, Upper, Lower, Middle)
- Trapezoidal rule
- Simpson
- Variational Monte Carlo
- Markov Chain Monte Carlo (MCMC)
 - \Rightarrow Multiple techniques to speed this up!

Trace estimation

- Girard-Hutchinson
- Hutch⁺⁺
- XTrace
- XNysTrace
- Quantum Trace Estimation

Sketching

- Gaussian Embedding
- Subsampled Randomized Trigonometric Transforms (SRTT)
- Sparse Sign Embeddings (SSE)
 - SSE with Cauchy random variables
 - SSE with exponential random variables
- Adaptive sampling

Application to least-squares problems

- Sketch-and-solve
- Iterative sketching

Guest Lecture on sketching high-dimensional probability distributions

- Introduction to inherent high-dimensional problems
- Introduction to tensors
- Continuous sketching

Matrix approximation (revisited)

- $\bullet\,$ Low-rank approximation via: QR, CP-QR and ID/skeletonization
- SVD and rSVD
- Matrix Monte Carlo
- Matrix sketching

Multi-linear algebra

- Detailed introduction to tensor spaces and tensor algebra
- Tensor diagrams
- Tensor product approximations
 - Canonical Polyadic (CP) Decomposition
 - Tucker Decomposition
 - Tensor Train (TT) Decomposition
 - Hierarchical Tucker (HT) Decomposition
- Generalizations of SVD
 - (T)HOSVD
 - S(T)HOSDV
 - r-STHOSVD
 - sketched-STHOSVD
 - sub-sketch-STHOSVD
- Sketching TT

Eigenvalue problems

- Eigenvalue revealing decompositions
 - eigenvalue decomposition
 - unitary eigenvalue decomposition
 - Schur decomposition
- Two-step numerical procedure
 - Householder for upper Hessenbergform
 - Power iteration
 - Inverse iteration
 - "Pure" QR algorithm (without shift)
 - "Practical" QR algorithm (with shift)
- Krylov methods for eigenvalue problems
 - Rayleigh-Ritz (RR)/ Arnoldi method
 - sketched-RR

Krylov methods for linear systems

- Steepest descent
- Conjugate Gradient (CG)
- Optimality of CG
- Generalized Minimal Residual Method (GMRES)
 - Arnoldi (Gram-Schmidt, Double Gram-Schmidt, Householder, \dots)
 - Lanczos
 - Chebyshev recurrence
- sketched GMRES

Conclusion

- Randomized techniques are a powerful tool for certain large problems in numerical linear algebra
- Randomized techniques are no silver bullet
- Randomized techniques often require careful implementation to be fully leveraged

Thank you for your attention