Sketching Krylov Subspace Methods
 - Linear Systems -
 Lecture 23

F. M. Faulstich

04/19/2024

Conjugate Gradient

- Method of steepest descent

Conjugate Gradient

- Method of steepest descent
\Rightarrow Rewrite the problem as minimization:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

for $\mathbf{A} \in \mathbb{H}_{n}$ and $\mathbf{A} \succ \mathbf{0}$.

Conjugate Gradient

- Method of steepest descent
\Rightarrow Rewrite the problem as minimization:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

for $\mathbf{A} \in \mathbb{H}_{n}$ and $\mathbf{A} \succ \mathbf{0}$.
\Rightarrow "walk" in the direction of the steepest descent
\Rightarrow Very intuitive but - in general - not optimal

Conjugate Gradient

- Method of steepest descent
\Rightarrow Rewrite the problem as minimization:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

for $\mathbf{A} \in \mathbb{H}_{n}$ and $\mathbf{A} \succ \mathbf{0}$.
\Rightarrow "walk" in the direction of the steepest descent \Rightarrow Very intuitive but - in general - not optimal

- Different idea:

Conjugate Gradient

- Method of steepest descent
\Rightarrow Rewrite the problem as minimization:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

for $\mathbf{A} \in \mathbb{H}_{n}$ and $\mathbf{A} \succ \mathbf{0}$.
\Rightarrow "walk" in the direction of the steepest descent
\Rightarrow Very intuitive but - in general - not optimal

- Different idea:

A-conjugate the gradient w.r.t. the previous search directions \Rightarrow conjugate gradient (CG) method

Conjugate Gradient

- Method of steepest descent
\Rightarrow Rewrite the problem as minimization:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{x}^{\top} \mathbf{b}
$$

for $\mathbf{A} \in \mathbb{H}_{n}$ and $\mathbf{A} \succ \mathbf{0}$.
\Rightarrow "walk" in the direction of the steepest descent
\Rightarrow Very intuitive but - in general - not optimal

- Different idea:

A-conjugate the gradient w.r.t. the previous search directions \Rightarrow conjugate gradient (CG) method

- CG is a Krylov subspace method, i.e., $\mathbf{x}_{k} \in \mathcal{K}_{k}$
- The search direction at $\mathrm{k} t h$ iteration is optimal

$$
\left\|\mathbf{x}_{*}-\mathbf{x}_{k}\right\|_{\mathbf{A}}=\min _{\mathbf{x} \in \mathcal{K}_{k}}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{\mathbf{A}}
$$

and $\left\|\mathbf{x}_{*}-\mathbf{x}_{\ell}\right\|_{\mathbf{A}}=0$ for some $\ell \leq n$

Generalized Minimal Residual Method

Question: What if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a general matrix?

Generalized Minimal Residual Method

- Following the idea of Krylov subspace methods we seek

$$
\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|
$$

where $\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)=\operatorname{span}\left(\mathbf{r}_{0}, \mathbf{A r} \mathbf{r}_{0}, \ldots, \mathbf{A}^{k-1} \mathbf{r}_{0}\right)$
(Note that if $\mathbf{x}_{0}=\mathbf{0}$, we have $\mathbf{r}_{0}=\mathbf{b}$)

- Assume we have an orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of $\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)$. Then

$$
\mathbf{x}=\mathbf{x}_{0}+\mathbf{V}_{k} \mathbf{y}
$$

for some $\mathbf{y} \in \mathbb{R}^{k}$, with $\mathbf{V}_{k}=\left[\mathbf{v}_{1}|\ldots| \mathbf{v}_{k}\right] \in \mathbb{R}^{n \times k}$ and

$$
\|\mathbf{b}-\mathbf{A} \mathbf{x}\|=\left\|\mathbf{b}-\mathbf{A}\left(\mathbf{x}_{0}+\mathbf{V}_{k} \mathbf{y}\right)\right\|=\left\|\mathbf{r}_{0}-\mathbf{A} \mathbf{V}_{k} \mathbf{y}\right\|
$$

hence

$$
\min _{\mathbf{x} \in \mathbf{x}_{0}+\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|=\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\mathbf{r}_{0}-\mathbf{A} \mathbf{V}_{k} \mathbf{y}\right\|
$$

\Rightarrow Ordinary least-squares problem!

Generalized Minimal Residual Method

- NOTE: This method needs an orthonormal basis of $\mathcal{K}_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)$ \Rightarrow Vulnerable to an imperfect basis caused by computational errors

Different approaches to computing this basis lead to different "flavors" of GMRES

GMRES with Arnoldi (Gram-Schmidt)

- Arnoldi process:
$\mathbf{r}_{0} \leftarrow$ Initial residual
$\mathbf{v}_{1}=\mathbf{r}_{0} /\left\|\mathbf{r}_{0}\right\|$
$\mathbf{V}_{1}=\left[\mathbf{v}_{1}\right]$
For $p=2$ to k :

$$
\begin{aligned}
& \mathbf{w}_{p}=\left(\mathbf{I}-\mathbf{V}_{p-1} \mathbf{V}_{p-1}^{\top}\right) \mathbf{A} \mathbf{v}_{p-1} \\
& \mathbf{v}_{p}=\mathbf{w}_{p} /\left\|\mathbf{w}_{p}\right\| \\
& \mathbf{V}_{p}=\left[\mathbf{V}_{p-1} \mid \mathbf{v}_{p}\right]
\end{aligned}
$$

GMRES with Arnoldi (Gram-Schmidt)

- This yields

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{V}_{k+1} \mathbf{H}_{k}
$$

with

$$
\mathbf{H}_{k}=\left[\begin{array}{cccc}
h_{1,1} & h_{1,2} & \cdots & h_{1, k} \\
h_{2,1} & h_{2,2} & \cdots & h_{2, k} \\
0 & h_{3,2} & h_{3,3} & \vdots \\
\vdots & \ddots & \ddots & \\
0 & & h_{k, k-1} & h_{k, k} \\
0 & & 0 & h_{k+1, k}
\end{array}\right]
$$

GMRES with Arnoldi (Gram-Schmidt)

- Note that

$$
\mathbf{r}_{0}=\left\|\mathbf{r}_{0}\right\| \mathbf{v}_{1}=: \beta \mathbf{v}_{1}
$$

- Hence

$$
\left\|\mathbf{r}_{0}-\mathbf{A} \mathbf{V}_{k} \mathbf{y}\right\|=\left\|\mathbf{r}_{0}-\mathbf{V}_{k+1} \mathbf{H}_{k} \mathbf{y}\right\|=\left\|\mathbf{V}_{k+1}\left(\beta \mathbf{e}_{1}-\mathbf{H}_{k} \mathbf{y}\right)\right\|=\left\|\beta \mathbf{e}_{1}-\mathbf{H}_{k} \mathbf{y}\right\|
$$

- Thus we seek to solve

$$
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\beta \mathbf{e}_{1}-\mathbf{H}_{k} \mathbf{y}\right\|
$$

Using QR factorization of $\mathbf{H}_{k}=\mathbf{Q}_{k} \mathbf{R}_{k}$ we get

$$
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\mathbf{Q}_{k}\left(\beta \mathbf{Q}_{k}^{\top} \mathbf{e}_{1}-\mathbf{R}_{k} \mathbf{y}\right)\right\|=\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\mathbf{g}_{k}-\mathbf{R}_{k} \mathbf{y}\right\|
$$

The minimum is obtained at $\left[\mathbf{R}_{k} \mathbf{y}\right]_{i=1}^{k}=\left[\mathbf{g}_{k}\right]_{i=1}^{k}$. Hence

$$
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\mathbf{g}_{k}-\mathbf{R}_{k} \mathbf{y}\right\|=\left[\mathbf{g}_{k}\right]_{k+1}
$$

Make GMRES more stable

- Gram-Schmidt may suffer from numerical instabilities!
- Alternatives exist:
modified Gram Schmidt
double Gram-Schmidt
Given's rotations
Householder

Computational comparison

- N. I. Dravins, Numerical Implementations of the GMRES (2015):

GMRES with Lanczos recurrence

- We assume $\mathbf{A} \in \mathbb{H}_{n}$
- Arnoldi process simplifies dramatically:

In every iteration

$$
\mathbf{w}_{p}=\left(\mathbf{I}-\mathbf{v}_{p-1} \mathbf{v}_{p-1}^{\top}-\mathbf{v}_{p-2} \mathbf{v}_{p-2}^{\top}\right) \mathbf{A} \mathbf{v}_{p-1}
$$

- The Lanczos basis yields

$$
\mathbf{V}_{k}^{\top} \mathbf{A} \mathbf{V}_{k}=\mathbf{J}_{k}
$$

where \mathbf{J}_{k} is tri-diagonal

GMRES with Chebyshev recurrence

- Sometimes orthogonalization is infeasible all together
- Assume $\Lambda(\mathbf{A}) \in\left[c \pm \delta_{x}, \pm \delta_{y}\right]$, and $\rho:=\max \left\{\delta_{x}, \delta_{y}\right\}$
- Chebyshev recurrence:

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{r}_{0} /\left\|\mathbf{r}_{0}\right\| \\
& \mathbf{v}_{2}=(2 \rho)^{-1}(\mathbf{A}-c \mathbf{I}) \mathbf{v}_{1}
\end{aligned}
$$

$$
\text { for } p=3 \text { to } k \text { : }
$$

$$
\mathbf{v}_{p}=\frac{1}{\rho}\left((\mathbf{A}-c \mathbf{I}) \mathbf{v}_{p-1}-\frac{\delta_{x}^{2}-\delta_{y}^{2}}{4 \rho} \mathbf{v}_{p-2}\right)
$$

$$
\mathbf{v}_{p-2}=\mathbf{v}_{p-2} /\left\|\mathbf{v}_{p-2}\right\|
$$

$$
\mathbf{v}_{k-1}=\mathbf{v}_{k-1} /\left\|\mathbf{v}_{k-1}\right\|
$$

$$
\mathbf{v}_{k}=\mathbf{v}_{k} /\left\|\mathbf{v}_{k}\right\|
$$

- Good idea when dealing with large, sparse linear systems, where the coefficient matrix may be ill-conditioned
- Requires some estimate of the spectrum

GMRES with sketching

- Remember, we basically want to solve

$$
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\mathbf{r}_{0}-\mathbf{A} \mathbf{V}_{k} \mathbf{y}\right\|
$$

at every iteration

- As a least-squares problem it is a natural candidate for sketching

$$
\min _{\mathbf{y} \in \mathbb{R}^{k}}\left\|\mathbf{S}\left(\mathbf{r}_{0}-\mathbf{A} \mathbf{V}_{k} \mathbf{y}\right)\right\|
$$

where $\mathbf{S} \in \mathbb{R}^{d \times n}$ is the sketching matrix

- Gaussian
- SRTT
- SSE
\vdots

Comparison sGMRES vs GMRES ${ }^{1}$

- Comparison of performance of MATLAB GMRES (with and without restarting) against the sGMRES algorithm (with 2-partial orthogonalization or the Chebyshev basis)
- Sparse linear system $\mathbf{A x}=\mathbf{f}, \mathbf{A}$ is 2 D Laplacian with $n=10^{6}$.
- Left: Relative residual and condition number $\kappa_{2}(A B)$ of the reduced matrix associated with the k-truncated Arnoldi basis.
- Right: Total runtime including basis generation.

${ }^{1}$ Nakatsukasa and Tropp, arXiv:2111.00113

Course recap

What we have seen ...

Randomized algorithms come in various flavors

- Random initial guess
- Application of random vectros/matrices
- Stochastic means to access quantities with high probability

What we have seen ...

Integration

- Riemann sums (Left, Right, Upper, Lower, Middle)
- Trapezoidal rule
- Simpson
- Variational Monte Carlo
- Markov Chain Monte Carlo (MCMC) \Rightarrow Multiple techniques to speed this up!

What we have seen ...

Trace estimation

- Girard-Hutchinson
- Hutch ${ }^{++}$
- XTrace
- XNysTrace
- Quantum Trace Estimation

What we have seen ...

Sketching

- Gaussian Embedding
- Subsampled Randomized Trigonometric Transforms (SRTT)
- Sparse Sign Embeddings (SSE)
- SSE with Cauchy random variables
- SSE with exponential random variables
- Adaptive sampling

Application to least-squares problems

- Sketch-and-solve
- Iterative sketching

What we have seen ...

Guest Lecture on sketching high-dimensional probability distributions

- Introduction to inherent high-dimensional problems
- Introduction to tensors
- Continuous sketching

What we have seen ...

Matrix approximation (revisited)

- Low-rank approximation via: QR, CP-QR and ID/skeletonization
- SVD and rSVD
- Matrix Monte Carlo
- Matrix sketching

What we have seen ...

Multi-linear algebra

- Detailed introduction to tensor spaces and tensor algebra
- Tensor diagrams
- Tensor product approximations
- Canonical Polyadic (CP) Decomposition
- Tucker Decomposition
- Tensor Train (TT) Decomposition
- Hierarchical Tucker (HT) Decomposition
- Generalizations of SVD
- (T)HOSVD
- S(T)HOSDV
- r-STHOSVD
- sketched-STHOSVD
- sub-sketch-STHOSVD
- Sketching TT

What we have seen ...

Eigenvalue problems

- Eigenvalue revealing decompositions
- eigenvalue decomposition
- unitary eigenvalue decomposition
- Schur decomposition
- Two-step numerical procedure
- Householder for upper Hessenbergform
- Power iteration
- Inverse iteration
- "Pure" QR algorithm (without shift)
- "Practical" QR algorithm (with shift)
- Krylov methods for eigenvalue problems
- Rayleigh-Ritz (RR)/ Arnoldi method
- sketched-RR

What we have seen ...

Krylov methods for linear systems

- Steepest descent
- Conjugate Gradient (CG)
- Optimality of CG
- Generalized Minimal Residual Method (GMRES)
- Arnoldi (Gram-Schmidt, Double Gram-Schmidt, Householder, ...)
- Lanczos
- Chebyshev recurrence
- sketched GMRES

Conclusion

- Randomized techniques are a powerful tool for certain large problems in numerical linear algebra
- Randomized techniques are no silver bullet
- Randomized techniques often require careful implementation to be fully leveraged

Thank you for your attention

