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Numerical intergration

Why do we care?

Application in Quantum Chemistry:

vp,q,r,s =

∫
R3

∫
R3

χp(r1)χr(r1)χq(r2)χs(r2)

|r1 − r2|
dr1dr2
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Numerical intergration

Why do we care?

Discretization of continuous operators:

[D]i,j =

∫
X
φi(x)D φj(x)dx



2/1

Numerical intergration

Why do we care?

Numerically solving differential equations:

• Left Riemann sum → explicit Euler

• Right Riemann sum → implicit Euler

• Trapezoidal rule → Crank-Nicolson
...
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F =

∫ b

a
f(x) dx
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Numerical integration

We are interested in computing

F =

∫ b

a
f(x) dx

Let f : [a, b]→ R be a function defines on a closed interval [a, b] ⊂ R and
let {x0, ..., xn} be a partition of [a, b], i.e.,

a = x0 < x1 < ... < xn = b.

Then

Rleft(f, n) =

n∑
i=1

f(xi−1)∆xi

where ∆xi = xi − xi−1
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Numerical integration

We are interested in computing

F =

∫ b

a
f(x) dx

Riemann sum (Lower):
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Riemann Sums

Let f : [a, b]→ R be a function defines on a closed interval [a, b] ⊂ R and
let {x0, ..., xn} be a partition of [a, b], i.e.,

a = x0 < x1 < ... < xn = b.

Then

R(f, n) =

n∑
i=1

f(x̃i)∆xi

where ∆xi = xi − xi−1 and x̃i ∈ [xi−1, xi].

• Left Riemann sum: If x̃i = xi−1

• Right Riemann sum: If x̃i = xi

• Upper Riemann sum: If x̃i = sup(f([xi−1, xi])

• Lower Riemann sum: If x̃i = inf(f([xi−1, xi])

• Middle Riemann sum: If x̃i = (xi + xi−1)/2
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Middle Riemann sum error

• Let f : [a, b]→ R be a twice continuous differentiable function and

M = sup
x∈[a,b]

|f ′′(x)|

Then

|Rmid(f, n)− F | ≤ M(b− a)3

24n2
∼ O

(
1

n2

)
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Trapezoidal rule

We are interested in computing

F =

∫ b

a
f(x) dx

Trapezoidal rule:

Let f : [a, b]→ R be a function defines on a closed interval [a, b] ⊂ R and
let {x0, ..., xn} be a partition of [a, b], i.e.,

a = x0 < x1 < ... < xn = b.

Then

T (f, n) =
∆x

2

(
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

)
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Trapezoidal rule error

• Let f : [a, b]→ R be a twice continuous differentiable function and

M = sup
x∈[a,b]

|f ′′(x)|

Then

|T (f, n)− F | ≤ M(b− a)3

12n2
∼ O

(
1

n2

)
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Simpson’s rule

We are interested in computing

F =

∫ b

a
f(x) dx

Simpson’s rule:
Let f : [a, b]→ R be a function defines on a closed interval [a, b] ⊂ R and
let {x0, ..., xn} be a partition of [a, b] with n even, i.e.,

a = x0 < x1 < ... < xn = b.

Then

S(f, n) =
∆x

3

f(x0) + 4

n/2−1∑
i=0

f(x2i+1) + 2

n/2−1∑
i=1

f(x2i) + f(xn)
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Simpson’s rule error

• Let f : [a, b]→ R be a four-times continuously differentiable function
and

M = sup
x∈[a,b]

|f ′′(x)|

Then

|S(f, n)− F | ≤ M(b− a)5

180n4
∼ O

(
1

n4

)
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Other classical techniques

Gaussian quadrature:

F =

n∑
i=1

wif(xi)

• Gauss–Legendre quadrature

• Gauss–Jacobi quadrature

• Chebyshev–Gauss quadrature

• Gauss–Laguerre quadrature

• Gauss–Hermite quadrature
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How does randomness come into play?
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Monte Carlo Estimator
We are interested in computing

F =

∫ b

a
f(x) dx

Idea:
We approximate F by averaging samples of the function f at uniform
random points in [a, b].

Formally: Given N uniform random variables Xi ∼ U(a, b), its PDF is

ρ(x) =
1

b− a
1[a,b](x)

and define the Monte Carlo estimator as

〈
FN
〉

= (b− a)
1

N

N∑
i=1

f(Xi)
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Expectation value and convergence

Note:
The MC estimator is a random variable itself.
What is its expectation value?

Expectation value of the MC estimator

E(
〈
FN
〉
) = E

(
(b− a)

1

N

N∑
i=1

f(Xi)

)
= (b− a)

1

N

N∑
i=1

E (f(Xi))

= (b− a)
1

N

N∑
i=1

∫ ∞
−∞

f(x)ρ(x) dx =
1

N

N∑
i=1

∫ b

a
f(x) dx

=

∫ b

a
f(x) dx = F

What does N →∞ mean?
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Law of large numbers
Let X1, X2, ... be an infinite sequence of i.i.d. random variables with

E(X1) = E(X2) = ... = µ

and
V(X1) = V(X2) = ... = σ2.

Then

1. Weak law of large numbers:
For any ε > 0

lim
N→∞

P
(
|X̄N − µ| < ε

)
= 1

(convergence in probability)

2. Strong law of large numbers:

P
(

lim
N→∞

X̄N = µ

)
= 1

(converges almost surely)
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Convergence of Monte-Carlo estimator

The random variables
Yi = (b− a)f(Xi)

are i.i.d. with

E(Yi) = E((b− a)f(Xi)) = (b− a)

∫ ∞
−∞

f(x)ρ(x)dx =
b− a

(b− a)

∫ b

a
f(x)dx

= F

Strong Law of Large Numbers:

P
(

lim
N→∞

〈
FN
〉

= F

)
= P

(
lim

N→∞

1

N

N∑
i=1

Yi = F

)
= 1

The MC estimator converges almost surely to the integral F .
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Rate of convergence

How quickly does this estimate converge? → standard deviation

V(
〈
FN
〉
) = V

(
(b− a)

1

N

N∑
i=1

f(Xi)

)
=

(b− a)2

N2

N∑
i=1

V (f(Xi))︸ ︷︷ ︸
=:s2

=
(b− a)2s2

N

Hence

σ =
√
V(〈FN 〉) =

(b− a)s√
N

∼ O
(

1√
N

)
We must quadruple the number of samples in order to reduce the error by

half!

What happens in higher dimensions?


