Monte Carlo Integration Lecture 3

F. M. Faulstich

01/16/2024

Numerical intergration

Why do we care?

Numerical intergration

Why do we care?

Application in Quantum Chemistry:

$$
v_{p, q, r, s}=\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\chi_{p}\left(\mathbf{r}_{1}\right) \chi_{r}\left(\mathbf{r}_{1}\right) \chi_{q}\left(\mathbf{r}_{2}\right) \chi_{s}\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

Numerical intergration

Why do we care?

Discretization of continuous operators:

$$
[\mathbf{D}]_{i, j}=\int_{X} \phi_{i}(\mathbf{x}) \mathcal{D} \phi_{j}(\mathbf{x}) d \mathbf{x}
$$

Numerical intergration

Why do we care?
Numerically solving differential equations:

- Left Riemann sum \rightarrow explicit Euler
- Right Riemann sum \rightarrow implicit Euler
- Trapezoidal rule \rightarrow Crank-Nicolson

Numerical integration

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Numerical integration

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Riemann sum (Left):

Numerical integration

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function defines on a closed interval $[a, b] \subset \mathbb{R}$ and let $\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, i.e.,

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b .
$$

Then

$$
R_{\mathrm{left}}(f, n)=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x_{i}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$

Numerical integration

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Riemann sum (Right):

Numerical integration

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Riemann sum (Upper):

Numerical integration

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Riemann sum (Lower):

Riemann Sums

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function defines on a closed interval $[a, b] \subset \mathbb{R}$ and let $\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, i.e.,

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b .
$$

Then

$$
R(f, n)=\sum_{i=1}^{n} f\left(\tilde{x}_{i}\right) \Delta x_{i}
$$

where $\Delta x_{i}=x_{i}-x_{i-1}$ and $\tilde{x}_{i} \in\left[x_{i-1}, x_{i}\right]$.

- Left Riemann sum: If $\tilde{x}_{i}=x_{i-1}$
- Right Riemann sum: If $\tilde{x}_{i}=x_{i}$
- Upper Riemann sum: If $\tilde{x}_{i}=\sup \left(f\left(\left[x_{i-1}, x_{i}\right]\right)\right.$
- Lower Riemann sum: If $\tilde{x}_{i}=\inf \left(f\left(\left[x_{i-1}, x_{i}\right]\right)\right.$
- Middle Riemann sum: If $\tilde{x}_{i}=\left(x_{i}+x_{i-1}\right) / 2$

Middle Riemann sum error

Middle Riemann sum error

- Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice continuous differentiable function and

$$
M=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|
$$

Then

$$
\left|R_{\text {mid }}(f, n)-F\right| \leq \frac{M(b-a)^{3}}{24 n^{2}} \sim \mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

Trapezoidal rule

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Trapezoidal rule:

Trapezoidal rule

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Trapezoidal rule:
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function defines on a closed interval $[a, b] \subset \mathbb{R}$ and let $\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, i.e.,

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b
$$

Then

$$
T(f, n)=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right)
$$

Trapezoidal rule error

- Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice continuous differentiable function and

$$
M=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|
$$

Then

$$
|T(f, n)-F| \leq \frac{M(b-a)^{3}}{12 n^{2}} \sim \mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

Simpson's rule

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Simpson's rule:

Simpson's rule

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Simpson's rule:
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function defines on a closed interval $[a, b] \subset \mathbb{R}$ and let $\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ with n even, i.e.,

$$
a=x_{0}<x_{1}<\ldots<x_{n}=b .
$$

Then

$$
S(f, n)=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 \sum_{i=0}^{n / 2-1} f\left(x_{2 i+1}\right)+2 \sum_{i=1}^{n / 2-1} f\left(x_{2 i}\right)+f\left(x_{n}\right)\right)
$$

Simpson's rule error

- Let $f:[a, b] \rightarrow \mathbb{R}$ be a four-times continuously differentiable function and

$$
M=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|
$$

Then

$$
|S(f, n)-F| \leq \frac{M(b-a)^{5}}{180 n^{4}} \sim \mathcal{O}\left(\frac{1}{n^{4}}\right)
$$

Other classical techniques

Gaussian quadrature:

$$
F=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

- Gauss-Legendre quadrature
- Gauss-Jacobi quadrature
- Chebyshev-Gauss quadrature
- Gauss-Laguerre quadrature
- Gauss-Hermite quadrature

How does randomness come into play?

Monte Carlo Estimator

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Idea:

Monte Carlo Estimator

We are interested in computing

$$
F=\int_{a}^{b} f(x) d x
$$

Idea:
We approximate F by averaging samples of the function f at uniform random points in $[a, b]$.

Formally: Given N uniform random variables $X_{i} \sim \mathcal{U}(a, b)$, its PDF is

$$
\rho(x)=\frac{1}{b-a} \mathbb{1}_{[a, b]}(x)
$$

and define the Monte Carlo estimator as

$$
\left\langle F^{N}\right\rangle=(b-a) \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)
$$

Expectation value and convergence

Note:

The MC estimator is a random variable itself. What is its expectation value?

Expectation value and convergence

Note:
The MC estimator is a random variable itself.
What is its expectation value?
Expectation value of the MC estimator

$$
\begin{aligned}
\mathbb{E}\left(\left\langle F^{N}\right\rangle\right) & =\mathbb{E}\left((b-a) \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)\right)=(b-a) \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left(f\left(X_{i}\right)\right) \\
& =(b-a) \frac{1}{N} \sum_{i=1}^{N} \int_{-\infty}^{\infty} f(x) \rho(x) d x=\frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) d x \\
& =\int_{a}^{b} f(x) d x=F
\end{aligned}
$$

What does $N \rightarrow \infty$ mean?

Law of large numbers

Let X_{1}, X_{2}, \ldots be an infinite sequence of i.i.d. random variables with

$$
\mathbb{E}\left(X_{1}\right)=\mathbb{E}\left(X_{2}\right)=\ldots=\mu
$$

and

$$
\mathbb{V}\left(X_{1}\right)=\mathbb{V}\left(X_{2}\right)=\ldots=\sigma^{2}
$$

Then

1. Weak law of large numbers:

For any $\varepsilon>0$

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\bar{X}_{N}-\mu\right|<\varepsilon\right)=1
$$

(convergence in probability)
2. Strong law of large numbers:

$$
\mathbb{P}\left(\lim _{N \rightarrow \infty} \bar{X}_{N}=\mu\right)=1
$$

(converges almost surely)

Convergence of Monte-Carlo estimator

The random variables

$$
Y_{i}=(b-a) f\left(X_{i}\right)
$$

are i.i.d. with

$$
\begin{aligned}
\mathbb{E}\left(Y_{i}\right) & =\mathbb{E}\left((b-a) f\left(X_{i}\right)\right)=(b-a) \int_{-\infty}^{\infty} f(x) \rho(x) d x=\frac{b-a}{(b-a)} \int_{a}^{b} f(x) d x \\
& =F
\end{aligned}
$$

Strong Law of Large Numbers:

$$
\mathbb{P}\left(\lim _{N \rightarrow \infty}\left\langle F^{N}\right\rangle=F\right)=\mathbb{P}\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} Y_{i}=F\right)=1
$$

The MC estimator converges almost surely to the integral F.

Rate of convergence

How quickly does this estimate converge? \rightarrow standard deviation

$$
\begin{aligned}
\mathbb{V}\left(\left\langle F^{N}\right\rangle\right) & =\mathbb{V}\left((b-a) \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)\right)=\frac{(b-a)^{2}}{N^{2}} \sum_{i=1}^{N} \underbrace{\mathbb{V}\left(f\left(X_{i}\right)\right)}_{=: s^{2}} \\
& =\frac{(b-a)^{2} s^{2}}{N}
\end{aligned}
$$

Hence

$$
\sigma=\sqrt{\mathbb{V}\left(\left\langle F^{N}\right\rangle\right)}=\frac{(b-a) s}{\sqrt{N}} \sim \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)
$$

We must quadruple the number of samples in order to reduce the error by half!

What happens in higher dimensions?

