Trace Estimation I
 - Sampling Lecture 5

F. M. Faulstich

01/23/2024

Trace of a matrix

- Given $\mathbf{A} \in \mathbb{F}^{n \times n}$, we want to compute

$$
\operatorname{Tr}(\mathbf{A})=\sum_{i=1}^{n}(\mathbf{A})_{i i}
$$

- Not a problem if we have inexpensive access to matrix elements
- But what if we do not have that access?
\rightarrow We might only have $\mathbf{u} \mapsto \mathbf{A u}$ implicitly
Idea:
Construct an unbiased estimator for the trace and then average independent copies to reduce the variance of the estimator.

Trace of a matrix

- Given $\mathbf{A} \in \mathbb{F}^{n \times n}$, we want to compute

$$
\operatorname{Tr}(\mathbf{A})=\sum_{i=1}^{n}(\mathbf{A})_{i i}
$$

- Not a problem if we have inexpensive access to matrix elements
- But what if we do not have that access?
\rightarrow We might only have $\mathbf{u} \mapsto \mathbf{A u}$ implicitly
Idea:
Construct an unbiased estimator for the trace and then average independent copies to reduce the variance of the estimator.
(... Monte-Carlo)

Girard-Hutchinson Estimator

We assume $\mathbf{A} \in \mathbb{H}_{n}, 0 \preccurlyeq \mathbf{A}$, and $\operatorname{Tr}(\mathbf{A}) \neq 0$.

- Consider a random test vector $\boldsymbol{\omega} \in \mathbb{F}^{n}$ with $\mathbb{E}\left(\boldsymbol{\omega} \boldsymbol{\omega}^{*}\right)=\mathbf{I}$ we say $\boldsymbol{\omega}$ is isotropic.
- Then $X=\boldsymbol{\omega}^{*}(\mathbf{A} \boldsymbol{\omega})$ satisfies

$$
\mathbb{E}(X)=\operatorname{Tr}(\mathbf{A})
$$

$\Rightarrow X$ is an unbiased estimator of the trace.

Girard-Hutchinson Estimator

We assume $\mathbf{A} \in \mathbb{H}_{n}, 0 \preccurlyeq \mathbf{A}$, and $\operatorname{Tr}(\mathbf{A}) \neq 0$.

- Consider a random test vector $\boldsymbol{\omega} \in \mathbb{F}^{n}$ with $\mathbb{E}\left(\boldsymbol{\omega} \boldsymbol{\omega}^{*}\right)=\mathbf{I}$ we say $\boldsymbol{\omega}$ is isotropic.
- Then $X=\boldsymbol{\omega}^{*}(\mathbf{A} \boldsymbol{\omega})$ satisfies

$$
\mathbb{E}(X)=\operatorname{Tr}(\mathbf{A})
$$

$\Rightarrow X$ is an unbiased estimator of the trace.

- [Girard-Hutchinson Estimator] Reduce the variance by taking k copies

$$
\bar{X}_{k}=\frac{1}{k} \sum_{i=1}^{k} X_{i}
$$

where $X_{i} \sim X$ are i.i.d.
\rightarrow By linearity $\mathbb{E}\left(\bar{X}_{k}\right)=\operatorname{Tr}(\mathbf{A})$
\rightarrow But the variance decreases: $\mathbb{V}\left(\bar{X}_{k}\right)=\frac{1}{k} \mathbb{V}(X)$

Algorithm I (naïve Monte-Carlo Estimator)

- Input: $\mathbf{A} \in \mathbb{H}_{n}, k \in \mathbb{N}$
- for $\mathrm{i}=1: \mathrm{k}$

Draw isotropic $\boldsymbol{\omega}_{i} \in \mathbb{F}^{n}$
Compute $X_{i}=\boldsymbol{\omega}_{i}^{*} \mathbf{A} \boldsymbol{\omega}_{i}$

- Compute trace estimator $\bar{X}_{k}=k^{-1} \sum_{i=1}^{k} X_{i}$
- Compute sample variance $S_{k}=(k-1)^{-1} \sum_{i=1}^{k}\left(X_{i}-\bar{X}_{k}\right)^{2}$

Cost and Variance bounds

Cost:

- Simulate k independent copies $\boldsymbol{\omega}_{i}$
- Perform k matrix vector products
- Perform $\mathcal{O}(k n)$ additional operations

Note that with n vector multiplications we can compute $\operatorname{Tr}(\mathbf{A})$ exactly!

- [Girard 1989] Consider $\boldsymbol{\omega} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ then

$$
\mathbb{V}\left(\bar{X}_{k}\right)=\frac{2}{k} \sum_{i, j=1}^{n}\left|\mathbf{A}_{i j}\right|^{2}=\frac{2}{k}\|\mathbf{A}\|_{F}^{2} \leq \frac{2}{k}\|\mathbf{A}\| \operatorname{Tr}(\mathbf{A})
$$

- [Hutchinson 1990] Consider $\boldsymbol{\omega} \sim \mathcal{U}\{ \pm 1\}^{n}$ (Rademacher r.v.) then

$$
\mathbb{V}\left(\bar{X}_{k}\right)=\frac{4}{k} \sum_{1 \leq i<j \leq n}\left|\mathbf{A}_{i j}\right|^{2}<\frac{2}{k}\|\mathbf{A}\|_{F}^{2} \leq \frac{2}{k}\|\mathbf{A}\| \operatorname{Tr}(\mathbf{A})
$$

a priori Error Estimates

Chebychev's inequality:

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\operatorname{Tr}(\mathbf{A})\right| \geq t\right) \leq \frac{\mathbb{V}(X)}{k t^{2}} \quad \forall t>0
$$

The specific trace estimator will determine $\mathbb{V}(X)$:

- [Girard 1989] $\boldsymbol{\omega} \sim \mathcal{N}(0, \mathbf{I})$

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\operatorname{Tr}(\mathbf{A})\right| \geq t \operatorname{Tr}(\mathbf{A})\right) \leq \frac{2}{k t^{2} \operatorname{intdim}(\mathbf{A})}
$$

The bound improves as the intrinsic dimension of \mathbf{A} increases.

- Much stronger bounds can be obtained when exponential concentration inequalities are used!
(Cramér-Chernoff method)

