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Trace of a matrix

• Given A ∈ Fn×n, we want to compute

Tr(A) =

n∑
i=1

(A)ii

• Not a problem if we have inexpensive access to matrix elements

• But what if we do not have that access?
→ We might only have u 7→ Au implicitly

Idea:

Construct an unbiased estimator for the trace and then average
independent copies to reduce the variance of the estimator.

(... Monte-Carlo)
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Girard–Hutchinson Estimator

We assume A ∈ Hn, 0 4 A, and Tr(A) 6= 0.

• Consider a random test vector ω ∈ Fn with E(ωω∗) = I
we say ω is isotropic.

• Then X = ω∗(Aω) satisfies

E(X) = Tr(A)

⇒ X is an unbiased estimator of the trace.

• [Girard–Hutchinson Estimator] Reduce the variance by taking k
copies

X̄k =
1

k

k∑
i=1

Xi

where Xi ∼ X are i.i.d.
→ By linearity E(X̄k) = Tr(A)
→ But the variance decreases: V(X̄k) = 1

kV(X)
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Algorithm I (näıve Monte-Carlo Estimator)

• Input: A ∈ Hn, k ∈ N
• for i=1:k

Draw isotropic ωi ∈ Fn

Compute Xi = ω∗
iAωi

• Compute trace estimator X̄k = k−1
∑k

i=1Xi

• Compute sample variance Sk = (k − 1)−1
∑k

i=1(Xi − X̄k)2
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Cost and Variance bounds

Cost:

• Simulate k independent copies ωi

• Perform k matrix vector products

• Perform O(kn) additional operations

Note that with n vector multiplications we can compute Tr(A) exactly!

• [Girard 1989] Consider ω ∼ N (0, I) then

V(X̄k) =
2

k

n∑
i,j=1

|Aij |2 =
2

k
‖A‖2F ≤

2

k
‖A‖Tr(A)

• [Hutchinson 1990] Consider ω ∼ U{±1}n (Rademacher r.v.) then

V(X̄k) =
4

k

∑
1≤i<j≤n

|Aij |2 <
2

k
‖A‖2F ≤

2

k
‖A‖Tr(A)
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a priori Error Estimates

Chebychev’s inequality:

P(|X̄k − Tr(A)| ≥ t) ≤ V(X)

kt2
∀t > 0

The specific trace estimator will determine V(X):

• [Girard 1989] ω ∼ N (0, I)

P(|X̄k − Tr(A)| ≥ tTr(A)) ≤ 2

kt2intdim(A)

The bound improves as the intrinsic dimension of A increases.

• Much stronger bounds can be obtained when exponential
concentration inequalities are used!
(Cramér–Chernoff method)


