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Concentration Inequalities

Wikipedia:

“[...] concentration inequalities provide mathematical bounds on the
probability of a random variable deviating from some value”

• Markov’s inequality:
Let X be a nonnegative random variable and a > 0, then

P(X ≥ a) ≤ E(X)

a
.

• Chebychev’s inequality:
Let X be a random variable with finite non-zero variance σ2.

P(|X − µ| ≥ kσ) ≤ 1

k2
∀k > 0.

... What do we use them for?
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Why concentration inequalities?

• Concentration inequalities can provide quantitative estimates of the
likely size of the error when a randomized algorithm is executed.

• We have seen that for Xi i.i.d Chebychev’s inequality yields

P

(∣∣∣∣1k
k∑

i=1

Xi − µ
∣∣∣∣ ≥ t

)
≤ σ2

kt2

where E(X) = µ and V(X) = σ2.

• Question:
We want to estimate µ by 1

k

∑k
i=1Xi up to an error ε with a failure

probability δ. How many samples do we need at most?
The accuracy dictates t = ε, and

δ =
σ2

kt2
⇔ k =

σ2

δε2
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How tight are Markov & Chebychev?

What is the ideal scenario?

• Central limit theorem suggests that X̄k approximates N (µ, σ2/k)

• So, we would like/expect a result like

P
(
|X̄k − µ| ≥ t

) ?

/ exp

(
− kt

2

2σ2

)
(Probability of being in the tail of a Gaussian)
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Hoeffding’s Inequality

• Let X1, ..., Xk be i.i.d and such that a ≤ Xi ≤ b almost surely. Then

P
(
X̄k − µ ≥ t

)
≤ exp

(
− 2kt2

(b− a)2

)
P
(
|X̄k − µ| ≥ t

)
≤ 2exp

(
− 2kt2

(b− a)2

)
for all t > 0.

... We need some tools to prove this!
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Tools

• Cramér–Chernoff method:
Let X be a random variable then

P(X ≥ x) ≤ min
r>0

exp(−rx)E(exp(rX))

• Hoeffding’s Lemma:
Let X be a random variable with a ≤ X ≤ b. Then for all t ∈ R the
momentum generating function of X satisfies:

E(etX) ≤ exp

(
tµ+

1

8
t2(b− a)2

)
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Proof of Hoeffding’s inequality I

• We apply the Cramér-Chernoff method

P
(
X̄k − µ ≥ t

)
≤ min

r>0
exp(−rt)

k∏
i=1

E
[
exp

(
r

(
Xi

k
− µ

k

))]
• Hoeffding’s Lemma yields

E
[
exp

(
r

(
X

k
− µ

k

))]
≤ exp

(
1

8

r2

k2
(b− a)2

)
• Hence

P
(
X̄k − µ ≥ t

)
≤ min

r>0
exp

(
−rt+

1

8

r2

k
(b− a)2

)
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Proof of Hoeffding’s inequality II

• Find

min
r>0

exp

(
−rt+

1

8

r2

k
(b− a)2

)

= exp

(
− 2t2k

(b− a)2

)

• Putting all together, we obtain

P
(
X̄k − µ ≥ t

)
≤ exp

(
− 2t2k

(b− a)2

)
• Since

P
(
X̄k − µ ≤ −t

)
= P

(
µ− X̄k ≥ t

)
≤ exp

(
− 2t2k

(b− a)2

)
we get the second result

P
(
|X̄k − µ| ≥ t

)
≤ 2 exp

(
− 2t2k

(b− a)2

)
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Discussion of Hoeffding’s Inequality

• Hoeffding’s inequality is similar to the anticipated scenario of the
central limit theorem

P
(
|X̄k − µ| ≥ t

) ?

/ exp

(
− kt

2

2σ2

)
but it replaces σ2 by the larger quantity (b− a)2/4

• Note that
σ2 ≤ (b− a)2/4
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Berstein’s Inequality

• Let X1, ..., Xk be i.i.d and such that |X − E(X)| ≤ B almost surely.
Then

P
(
|X̄k − µ| ≥ t

)
≤ 2 exp

(
− kt2/2

σ2 +Bt/3

)
• For small values of t σ2 dominates Bt/3 and we get what we

anticipated from the CLT

• For large t we get

P
(
|X̄k − µ| ≥ t

) large t

/ 2 exp

(
−kt3

2B

)
which is exponentially small in t rather than t2.

⇒ For small t, Berstein’s inequality is tighter than Hoeffding’s,
for large t however Hoeffding’s is tighter.
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Application to the trace estimator

• Let X = ω∗Aω with ω Rademacher and A ∈ Hn.
Then

V(ω∗Aω) = 4
∑
i<j

(A)2i,j ≤ 2‖A‖2F

and Chebychev yields

P(|X̄k − Tr(A)| ≥ t) ≤
2‖A‖2F
kt2

• Using Bernstein’s inequality we can establish

P(|X̄k − Tr(A)| ≥ t) ≤ 2 exp

(
− kt2

3‖A‖2F + 4tn‖A‖/3

)
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More Concentration inequalities

• Vysochanskij–Petunin inequality

• Paley–Zygmund inequality

• Cantelli’s inequality

• Azuma’s inequality

• McDiarmid’s inequality
...
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A prior error estimates for trace estimator

Gratton and Titley-Peloquin (2018):

• Let A ∈ Hn(R) and 0 4 A be non-zero. For τ > 1 and k ≤ n, the
Girard–Hutchinson estimator with ω ∼ N (0, I) then fulfills

P(X̄k ≥ τTr(A)) ≤ exp

(
−1

2
k intdim(A)(

√
τ − 1)2

)
P(X̄k ≥ τ−1Tr(A)) ≤ exp

(
−1

4
k intdim(A)(τ−1 − 1)2

)


