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... What do we use them for?
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where E(X) = p and V(X) = o2
e Question:
We want to estimate u by % Zle X; up to an error € with a failure
probability 6. How many samples do we need at most?
The accuracy dictates t = ¢, and



How tight are Markov & Chebychev?

What is the ideal scenario?

e Central limit theorem suggests that X}, approximates N (u, 02 /k)

e So, we would like/expect a result like

kt?
(Xl 20 5 o (570)

(Probability of being in the tail of a Gaussian)



Hoeftding’s Inequality

o Let Xq,..., X; beii.d and such that a < X; < b almost surely. Then

2
P (X)—p=>t) <exp <—2kt>

(b—a)?
2
P (]Xk —pul > t) < 2exp (—&)

for all ¢ > 0.

... We need some tools to prove this!



Tools

e Cramér—Chernoff method:
Let X be a random variable then

P(X >z) < Ig;igexp(—r:E)E(exp(rX))

e Hoeffding’s Lemma:
Let X be a random variable with a < X <b. Then for all ¢ € R the
momentum generating function of X satisfies:

1
E(e!™) < exp <tu + §t2(b - a)2>



Proof of Hoeffding’s inequality I

e We apply the Cramér-Chernoff method

k

P(Xp—p>t) < min exp(—rt) I1E [exp (r <k -

i=1

e Hoeffding’s Lemma yields

o (2 2))] e (3

e Hence



Proof of Hoeftding’s inequality II
e Find
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Proof of Hoeffding’s inequality II

1 2 9 2
rTn>i%)1 exp <—rt + §%(b - a)2> = exp <_(bj:)2>

e Putting all together, we obtain

e Find

2
P (X —p>t) <exp (—ﬁ(’;)

e Since

2
P(Xy—p<—t)=P(u—Xy>t) Sexp<—(b2ij)2)

we get the second result

_ 262k
P(|Xp —pl >t) <2exp (—M)



Discussion of Hoeffding’s Inequality

e Hoeffding’s inequality is similar to the anticipated scenario of the
central limit theorem

? 2
P(|Xk_ﬂ|2t)§exp<_kt>
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but it replaces o2 by the larger quantity (b — a)?/4
e Note that
o2 < (b—a)?/4



Berstein’s Inequality

e Let Xi,..., Xj be ii.d and such that |X —E(X)| < B almost surely.

Then 2/
_ kt=/2
Pl Xy —ul>t) <2 -
(1K =l 21) < eXp( a2+Bt/3>

e For small values of ¢ 02 dominates Bt/3 and we get what we
anticipated from the CLT

e For large t we get

_ large t kt3
P(|Xp—pul>t) 5 2 -——
(IXk —pl >t) 5 2exp < 5 B)
which is exponentially small in ¢ rather than t2.

= For small ¢, Berstein’s inequality is tighter than Hoeffding’s,
for large t however Hoeffding’s is tighter.



Application to the trace estimator

e Let X = w*Aw with w Rademacher and A € H,,.
Then
V(w Aw) =4) (A)F; <2|Al%
1<J
and Chebychev yields

2|7

P(| Xy — Tr(A)| > t) < s

e Using Bernstein’s inequality we can establish

— th
P(1Xi — Tr(A)| > 1) < 2exp (— )
3[AZ 1 4in]A]/3



More Concentration inequalities

Vysochanskij—Petunin inequality

Paley—Zygmund inequality
e Cantelli’s inequality
e Azuma’s inequality

e McDiarmid’s inequality



A prior error estimates for trace estimator

Gratton and Titley-Peloquin (2018):
e Let A € H,(R) and 0 < A be non-zero. For 7 > 1 and k < n, the
Girard—Hutchinson estimator with w ~ A(0,I) then fulfills
_ 1
P(Xy > 7Tr(A)) < exp (—2k intdim(A) (/7 — 1)2>

P(X), > 7 'Tr(A)) < exp <—ik intdim(A) (7! — 1)2>



