Trace Estimation II
 - Concentration Inequalities Lecture 6

F. M. Faulstich

01/26/2024

Concentration Inequalities

Wikipedia:

"[...] concentration inequalities provide mathematical bounds on the probability of a random variable deviating from some value"

Concentration Inequalities

Wikipedia:

"[...] concentration inequalities provide mathematical bounds on the probability of a random variable deviating from some value"

- Markov's inequality:

Let X be a nonnegative random variable and $a>0$, then

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
$$

- Chebychev's inequality:

Let X be a random variable with finite non-zero variance σ^{2}.

$$
\mathbb{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \quad \forall k>0
$$

Concentration Inequalities

Wikipedia:

"[...] concentration inequalities provide mathematical bounds on the probability of a random variable deviating from some value"

- Markov's inequality:

Let X be a nonnegative random variable and $a>0$, then

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
$$

- Chebychev's inequality:

Let X be a random variable with finite non-zero variance σ^{2}.

$$
\mathbb{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}} \quad \forall k>0
$$

... What do we use them for?

Why concentration inequalities?

- Concentration inequalities can provide quantitative estimates of the likely size of the error when a randomized algorithm is executed.

Why concentration inequalities?

- Concentration inequalities can provide quantitative estimates of the likely size of the error when a randomized algorithm is executed.
- We have seen that for X_{i} i.i.d Chebychev's inequality yields

$$
\mathbb{P}\left(\left|\frac{1}{k} \sum_{i=1}^{k} X_{i}-\mu\right| \geq t\right) \leq \frac{\sigma^{2}}{k t^{2}}
$$

where $\mathbb{E}(X)=\mu$ and $\mathbb{V}(X)=\sigma^{2}$.

Why concentration inequalities?

- Concentration inequalities can provide quantitative estimates of the likely size of the error when a randomized algorithm is executed.
- We have seen that for X_{i} i.i.d Chebychev's inequality yields

$$
\mathbb{P}\left(\left|\frac{1}{k} \sum_{i=1}^{k} X_{i}-\mu\right| \geq t\right) \leq \frac{\sigma^{2}}{k t^{2}}
$$

where $\mathbb{E}(X)=\mu$ and $\mathbb{V}(X)=\sigma^{2}$.

- Question:

We want to estimate μ by $\frac{1}{k} \sum_{i=1}^{k} X_{i}$ up to an error ε with a failure probability δ. How many samples do we need at most?

Why concentration inequalities?

- Concentration inequalities can provide quantitative estimates of the likely size of the error when a randomized algorithm is executed.
- We have seen that for X_{i} i.i.d Chebychev's inequality yields

$$
\mathbb{P}\left(\left|\frac{1}{k} \sum_{i=1}^{k} X_{i}-\mu\right| \geq t\right) \leq \frac{\sigma^{2}}{k t^{2}}
$$

where $\mathbb{E}(X)=\mu$ and $\mathbb{V}(X)=\sigma^{2}$.

- Question:

We want to estimate μ by $\frac{1}{k} \sum_{i=1}^{k} X_{i}$ up to an error ε with a failure probability δ. How many samples do we need at most?
The accuracy dictates $t=\varepsilon$, and

$$
\delta=\frac{\sigma^{2}}{k t^{2}} \quad \Leftrightarrow \quad k=\frac{\sigma^{2}}{\delta \varepsilon^{2}}
$$

How tight are Markov \& Chebychev?

What is the ideal scenario?

- Central limit theorem suggests that \bar{X}_{k} approximates $\mathcal{N}\left(\mu, \sigma^{2} / k\right)$
- So, we would like/expect a result like

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\mu\right| \geq t\right) \stackrel{?}{\lesssim} \exp \left(-\frac{k t^{2}}{2 \sigma^{2}}\right)
$$

(Probability of being in the tail of a Gaussian)

Hoeffding's Inequality

- Let X_{1}, \ldots, X_{k} be i.i.d and such that $a \leq X_{i} \leq b$ almost surely. Then

$$
\begin{aligned}
\mathbb{P}\left(\bar{X}_{k}-\mu \geq t\right) & \leq \exp \left(-\frac{2 k t^{2}}{(b-a)^{2}}\right) \\
\mathbb{P}\left(\left|\bar{X}_{k}-\mu\right| \geq t\right) & \leq 2 \exp \left(-\frac{2 k t^{2}}{(b-a)^{2}}\right)
\end{aligned}
$$

for all $t>0$.
... We need some tools to prove this!

Tools

- Cramér-Chernoff method:

Let X be a random variable then

$$
\mathbb{P}(X \geq x) \leq \min _{r>0} \exp (-r x) \mathbb{E}(\exp (r X))
$$

- Hoeffding's Lemma:

Let X be a random variable with $a \leq X \leq b$. Then for all $t \in \mathbb{R}$ the momentum generating function of X satisfies:

$$
\mathbb{E}\left(e^{t X}\right) \leq \exp \left(t \mu+\frac{1}{8} t^{2}(b-a)^{2}\right)
$$

Proof of Hoeffding's inequality I

- We apply the Cramér-Chernoff method

$$
\mathbb{P}\left(\bar{X}_{k}-\mu \geq t\right) \leq \min _{r>0} \exp (-r t) \prod_{i=1}^{k} \mathbb{E}\left[\exp \left(r\left(\frac{X_{i}}{k}-\frac{\mu}{k}\right)\right)\right]
$$

- Hoeffding's Lemma yields

$$
\mathbb{E}\left[\exp \left(r\left(\frac{X}{k}-\frac{\mu}{k}\right)\right)\right] \leq \exp \left(\frac{1}{8} \frac{r^{2}}{k^{2}}(b-a)^{2}\right)
$$

- Hence

$$
\mathbb{P}\left(\bar{X}_{k}-\mu \geq t\right) \leq \min _{r>0} \exp \left(-r t+\frac{1}{8} \frac{r^{2}}{k}(b-a)^{2}\right)
$$

Proof of Hoeffding's inequality II

- Find

$$
\min _{r>0} \exp \left(-r t+\frac{1}{8} \frac{r^{2}}{k}(b-a)^{2}\right)
$$

Proof of Hoeffding's inequality II

- Find

$$
\min _{r>0} \exp \left(-r t+\frac{1}{8} \frac{r^{2}}{k}(b-a)^{2}\right)=\exp \left(-\frac{2 t^{2} k}{(b-a)^{2}}\right)
$$

- Putting all together, we obtain

$$
\mathbb{P}\left(\bar{X}_{k}-\mu \geq t\right) \leq \exp \left(-\frac{2 t^{2} k}{(b-a)^{2}}\right)
$$

- Since

$$
\mathbb{P}\left(\bar{X}_{k}-\mu \leq-t\right)=\mathbb{P}\left(\mu-\bar{X}_{k} \geq t\right) \leq \exp \left(-\frac{2 t^{2} k}{(b-a)^{2}}\right)
$$

we get the second result

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{2 t^{2} k}{(b-a)^{2}}\right)
$$

Discussion of Hoeffding's Inequality

- Hoeffding's inequality is similar to the anticipated scenario of the central limit theorem

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\mu\right| \geq t\right) \stackrel{?}{\lesssim} \exp \left(-\frac{k t^{2}}{2 \sigma^{2}}\right)
$$

but it replaces σ^{2} by the larger quantity $(b-a)^{2} / 4$

- Note that

$$
\sigma^{2} \leq(b-a)^{2} / 4
$$

Berstein's Inequality

- Let X_{1}, \ldots, X_{k} be i.i.d and such that $|X-\mathbb{E}(X)| \leq B$ almost surely. Then

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{k t^{2} / 2}{\sigma^{2}+B t / 3}\right)
$$

- For small values of $t \sigma^{2}$ dominates $B t / 3$ and we get what we anticipated from the CLT
- For large t we get

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\mu\right| \geq t\right) \stackrel{\text { large } \mathrm{t}}{\lesssim} 2 \exp \left(-\frac{k t 3}{2 B}\right)
$$

which is exponentially small in t rather than t^{2}.
\Rightarrow For small t, Berstein's inequality is tighter than Hoeffding's, for large t however Hoeffding's is tighter.

Application to the trace estimator

- Let $X=\boldsymbol{\omega}^{*} \mathbf{A} \boldsymbol{\omega}$ with $\boldsymbol{\omega}$ Rademacher and $\mathbf{A} \in \mathbb{H}_{n}$. Then

$$
\mathbb{V}\left(\boldsymbol{\omega}^{*} \mathbf{A} \boldsymbol{\omega}\right)=4 \sum_{i<j}(\mathbf{A})_{i, j}^{2} \leq 2\|\mathbf{A}\|_{F}^{2}
$$

and Chebychev yields

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\operatorname{Tr}(\mathbf{A})\right| \geq t\right) \leq \frac{2\|\mathbf{A}\|_{F}^{2}}{k t^{2}}
$$

- Using Bernstein's inequality we can establish

$$
\mathbb{P}\left(\left|\bar{X}_{k}-\operatorname{Tr}(\mathbf{A})\right| \geq t\right) \leq 2 \exp \left(-\frac{k t^{2}}{3\|\mathbf{A}\|_{F}^{2}+4 \operatorname{tn}\|\mathbf{A}\| / 3}\right)
$$

More Concentration inequalities

- Vysochanskij-Petunin inequality
- Paley-Zygmund inequality
- Cantelli's inequality
- Azuma's inequality
- McDiarmid's inequality

A prior error estimates for trace estimator

Gratton and Titley-Peloquin (2018):

- Let $\mathbf{A} \in \mathbb{H}_{n}(\mathbb{R})$ and $0 \preccurlyeq \mathbf{A}$ be non-zero. For $\tau>1$ and $k \leq n$, the Girard-Hutchinson estimator with $\boldsymbol{\omega} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ then fulfills

$$
\begin{aligned}
\mathbb{P}\left(\bar{X}_{k} \geq \tau \operatorname{Tr}(\mathbf{A})\right) & \leq \exp \left(-\frac{1}{2} k \operatorname{intdim}(\mathbf{A})(\sqrt{\tau}-1)^{2}\right) \\
\mathbb{P}\left(\bar{X}_{k} \geq \tau^{-1} \operatorname{Tr}(\mathbf{A})\right) & \leq \exp \left(-\frac{1}{4} k \operatorname{intdim}(\mathbf{A})\left(\tau^{-1}-1\right)^{2}\right)
\end{aligned}
$$

