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Implicit Trace Estimation Problem
• Given access to A ∈ Fn×n via the MatVec product x 7→ Ax, estimate

its trace:

Tr(A) =

n∑
i=i

(A)ii

• [Girard–Hutchinson estimator] Let {ωi} be isotropic and i.i.d. then

t̂rGH :=
1

m

m∑
i=1

ω∗i (Aωi)

is an unbiased estimator of the trace

E(t̂rGH) = Tr(A).

• We found

V(t̂rGH) =
1

m
V(ω∗(Aω)) ∈ O

(
1

m

)
⇒ Converges as O

(
1√
m

)
(Monte-Carlo)
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Variance reduction (HUTCH++)

Given m – a fixed number of MatVecs:

• Sample isotropic i.i.d. ω1, ...,ω2m/3

• Sketch Y = A[ωm/3+1|ωm/3+2|...|ω2m/3]

• Orthonormalize Q = orth(Y)

• Output estimator

t̂rH++ = Tr(Q∗(AQ)) +
1

m/3

m/3∑
i=1

ω∗i (I−QQ∗)
(
A(I−QQ∗)ωi

)
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• Recall that Â = QQ∗A is a low rank approximation of A

• HUTCH++ computes the trace of this low-rank approximation

Tr(Â) = Tr(QQ∗A) = Tr(Q∗(AQ))

and then applies the Girard–Hutchinson estimator to the residual

Tr(A− Â) = Tr((I−QQ∗)A) = Tr((I−QQ∗)A(I−QQ∗))

• HUTCH++ is an unbiased trace estimator of A

E(t̂rH++) = Tr(A)

and

V(t̂rH++) ∈ O
(

1

m2

)
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HUTCH++ Pseudocode

• Input: A ∈ Fn×n, m with mod(m, 3) = 0

• Output: t̂rH++

• Draw iid isotropic ω1, ...,ω2m/3 ∈ Fn

• Y = A[ωm/3+1|ωm/3+2|...|ω2m/3]

• Q = orth(Y)

• G = [ω1|ω2|...|ωm/3]−QQ∗[ω1|ω2|...|ωm/3]
• t̂rH++ = Tr(Q∗(AQ))− 1

m/3Tr(G∗(AG))

Indeed, we require m MatVecs
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Exchangeable

• Exchangeability principle:
If the test vectors ω1, ...,ωk are exchangeable, the
“minimum-variance estimator” is always a symmetric function or
ω1, ...,ωk
[invariant under application of the symmetric group (ωσ(1), ...,ωσ(k))]

• An estimator is exchangeable, if it is invariant under under
application of the symmetric group

• Exchangeability can be seen as a “robustness” property of
probabilistic algorithms:

“Exchangeability implies that each element in the sequence of
estimators contributes equally to the estimation” process

• The HUTCH++ estimator is not exchangeable
[it uses some test vectors to perform low-rank approx]

⇒ Development of XTRACE estimator
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XTRACE Estimator

Idea: Use all but one test vector to form a low-rank approximation, and
only use the remaining test vector to estimate the trace of the residual.
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XTRACE Estimator

• Draw ω1, ...,ωm/2 i.i.d. isotropic test vectors, and form

Ω := [ω1|...|ωm/2]

• Construct the orthonormal matrices

Q(i) = orth(AΩ−i)

where Ω−i is the test matrix with the ith column removed.

• Compute the basic estimators

t̂ri := Tr(Q∗(i)(AQ(i))) + ω∗i (I−Q(i)Q
∗
(i))(A(I−Q(i)Q

∗
(i))ωi)

• m/2. The XTRCE estimator averages these basic estimators:

t̂rX :=
1

m/2

m/2∑
i=1

t̂ri
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XTRACE Estimator

• The XTRCE estimator is an unbiased estimator of Tr(A)

• The XTRCE estimator is invariant under the action of the symmetry
group
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XTRACE Estimator Näıve Implementation

• Input: A ∈ Fn×n, m with mod(m, 2) = 0

• Output: t̂rX and trace error estimate

• Draw i.i.d isotropic ω1, ...,ωm/2

• Y = A[ω1|...|ωm/2]
• for i=1 to m/2

Q(i) = ortho(Y−i)

t̂ri = Tr(Q∗(i)(AQ(i))) + ω∗i (I−Q(i)Q
∗
(i))(A(I−Q(i)Q

∗
(i))ωi)

• t̂r = 1
m/2

∑m/2
i=1 t̂ri

• êrr2 = 1
(m/2)(m/2−1)

∑
i = 1m/2(t̂ri − t̂r)2



9/14

XNYSTRACE Estimator

• The central idea of the variance improved estimators is to use a
low-rank approximation of A

• For an arbitrary matrix this requires

• What about A ∈ Hn and 0 4 A?

⇒ Nyström approximation
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Nyström approximation

• Let A ∈ Hn and 0 4 A. Then

A〈X〉 = AX(X∗AX)†(AX)∗ = Y(X∗Y)†Y∗

is the Nyström approximation for a test matrix X ∈ Fn×s.
• Clearly rank(A〈X〉) ≤ s.

• Note that we only need a single application of AX to compute the
Nyström approximation.

• The randomized SVD requires two!

⇒ The Nyström approximation only requires k MatVecs whereas the
randomized SVD requires 2k MatVecs.
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Why does it work?

Proof for block matrix formulation

• Recall for

A =

(
W BT

B C

)
we have A/W = C−BW−1BT

• The Nyström approximation is given by

Ã =

(
W
B

)
W−1 (W BT

)
=

(
W BT

B BW−1BT

)
• Let’s look at

A− Ã =

(
W BT

B C

)
−
(

W BT

B BW−1BT

)
=

(
0 0
0 A/W

)
• Note: Nyström is a rough approximation
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XNYSTRACE Estimator Näıve

• Input: A ∈ Hn with 0 4 A, and m ∈ N
• Output: t̂rXN, and trace error estimate

• Draw i.i.d. isotropic ω1, ...,ωm

• Ω = [ω1|...|ωm]

• Y = AΩ

• for i = 1 to m
Ai = Y−i(Ω

∗
−iY−i)

†Y∗−i
t̂ri = Tr(Ai) + ω∗i ((A−Ai)ωi)

t̂rXN = 1
m

∑m
i=1 t̂ri

êrr2 = 1
m(m−1)

∑m
i=1(t̂ri − t̂r)2
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Computational Performance
Set up:

• Consider the matrix

A(λ) = Udiag(λ)U∗

where U is a Haar random orthogonal matrix.

• A Haar random orthogonal matrix is a matrix drawn uniformly from
the set of all orthogonal matrices of a given size:

i) Generate a A ∼ N (0, I)
ii) [Q,R] = qr(A)
iii) D = diag(sign(diag(R)))
iv) Q = QD

• For λ four choices are considered:

i) flat: λ = (3− 2(i− 1)/(N − 1) : i = 1, 2, ..., N)
ii) poly: λ = (i−2 : i = 1, 2, ..., N)
iii) exp: λ = (0.7i : i = 0, 2, ..., N − 1)

iv) step: λ = (1, ..., 1︸ ︷︷ ︸
50 times

, 10−3, ..., 10−3︸ ︷︷ ︸
N−50 times

)
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Computational Performance
• Apply the estimators to a random PSD matrix with exponentially

decreasing eigenvalue

• Run 1000 trails for feasible m

• compute the averaged error of the trace per estimator

Figure: Computational performance of different trace estimators1

1Epperly, Tropp, Webber, SIMAX, 2024


