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Implicit Trace Estimation Problem
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e Given access to A € via the MatVec product x — Ax, estimate

its trace:



Implicit Trace Estimation Problem
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e Given access to A € via the MatVec product x — Ax, estimate

its trace:

e [Girard—Hutchinson estimator| Let {w;} be isotropic and i.i.d. then
. 1 —
trem = — 2%‘ (Aw;)
1=

is an unbiased estimator of the trace
E(trgn) = Tr(A).
e We found . )
V(tAI“GH) = EV(QJ*(ALU)) c0 <)

m

= Converges as O (ﬁ) (Monte-Carlo)



Variance reduction (HuTCH++)

Given m — a fixed number of MatVecs:

e Sample isotropic i.i.d. wi,...,wap /3

Sketch Y = Alw,, /311 |wm/zr2l--|[wams]
Orthonormalize Q = orth(Y)

Output estimator

m/3

(e = THQ'(AQ) + o 31— QQ) (AT - QQ)e)
=1



e Recall that A = QQ*A is a low rank approximation of A

e HUTCH++ computes the trace of this low-rank approximation
Tr(A) = Tr(QQ'A) = Tx(Q"(AQ))
and then applies the Girard—Hutchinson estimator to the residual
Tr(A — A) = Tr((T- QQ")A) = Ti(T- QQA(I - QQ"))
e HUTCH++ is an unbiased trace estimator of A
E(trut) = Tr(A)

and

R 1
V(trH++) eO <7n2>



HuTcH++ Pseudocode

Input: A € F**" m with mod(m,3) =0
Output: tryyp

Draw iid isotropic wy, ..., wa,, /3 € F"

Y = A[wm/3+1 \Wm/3+2|-~-\‘—02m/3]

Q = orth(Y)

G = [wi|wa|.. |wp 3] — QQ*[wi|wal...|wh 3]
iy = THQ'(AQ)) — ;45 TH(G*(AG))
Indeed, we require m MatVecs



Exchangeable

e Exchangeability principle:
If the test vectors wi, ...,wy are exchangeable, the
“minimum-variance estimator” is always a symmetric function or
Wiy .o, WE
[invariant under application of the symmetric group (Wq (1), -+, Wo(k))]
e An estimator is exchangeable, if it is invariant under under
application of the symmetric group

e Exchangeability can be seen as a “robustness” property of
probabilistic algorithms:

“Exchangeability implies that each element in the sequence of
estimators contributes equally to the estimation” process



Exchangeable

e Exchangeability principle:
If the test vectors wi, ...,wy are exchangeable, the
“minimum-variance estimator” is always a symmetric function or
Wiy .o, WE
[invariant under application of the symmetric group (Wq (1), -+, Wo(k))]
e An estimator is exchangeable, if it is invariant under under
application of the symmetric group

e Exchangeability can be seen as a “robustness” property of
probabilistic algorithms:

“Exchangeability implies that each element in the sequence of
estimators contributes equally to the estimation” process

e The HUTCH++ estimator is not exchangeable
[it uses some test vectors to perform low-rank approx}

= Development of XTRACE estimator



XTRACE Estimator

Idea: Use all but one test vector to form a low-rank approximation, and
only use the remaining test vector to estimate the trace of the residual.



XTRACE Estimator

e Draw wy,...,w,, /5 i.i.d. isotropic test vectors, and form
Q= [wi|.. w2

e Construct the orthonormal matrices
Qi) = orth(AQ_;)

where €2_; is the test matrix with the ith column removed.

e Compute the basic estimators
tr; := Tr(Q;) (AQq))) + wi (I — Q) Qi) (Al - Q(y»Q[;))wi)

e m/2. The XTRCE estimator averages these basic estimators:



XTRACE Estimator

e The XTRCE estimator is an unbiased estimator of Tr(A)

e The XTRCE estimator is invariant under the action of the symmetry
group



XTrAcE Estimator Nalve Implementation

Input: A € F™*" m with mod(m,2) =0

Output: try and trace error estimate

e Draw i.i.d isotropic wi, ..., w, /2
Y = A[wl‘~-~|wm/ﬂ
for i=1 to m/2
Q(z) = ortho(Y 1)
tr; = Tr(QZ‘A) (AQ))) +wi(I-Q;»Q ,))( (I Q(i)Q?i))wi)

- m/2 Z trl
eI'I'2 = W ZZ = 1m/2(ti'1 — tAI')2



XNvysTRrAcCE Estimator

e The central idea of the variance improved estimators is to use a
low-rank approximation of A

e For an arbitrary matrix this requires

e What about A € H,, and 0 < A?

= Nystrom approximation



Nystrom approximation

e Let A€ H, and 0 < A. Then
AX) = AX(X*AX)T(AX)* = Y(X*Y)TY*

is the Nystrom approximation for a test matrix X € F"*5,
e Clearly rank(A (X)) < s.

e Note that we only need a single application of AX to compute the
Nystrom approximation.

e The randomized SVD requires two!

= The Nystrém approximation only requires & MatVecs whereas the
randomized SVD requires 2k MatVecs.



Why does it work?

Proof for block matrix formulation

w BT
(5 c)
we have A/W = C - BW!B”

e The Nystrom approximation is given by

A:<W>W—1(W BT):<W B )

e Recall for

B B BW BT

e Let’s look at
A_A_(W BY (W B _ (0 0
~\B C B BWBT)  \o A/W

e Note: Nystrom is a rough approximation



XNysTRrACE Estimator Nalve

Input: A € H,, with 0 < A, and m € N

Output: tArXN, and trace error estimate

e Draw i.i.d. isotropic wi,...,wn

Q = [wi]...|wn]
e Y =AQ

fori=1tom

A=Y (5, Y )Y,

tAI‘Z' = TI“(AZ) + w;‘((A — Al)w,)
tAI"XN = % 27;1 tAri
eir? = % SO (tr — tr)?

m(m—1



Computational Performance
Set up:

e Consider the matrix
A (M) = Udiag(A)U*

where U is a Haar random orthogonal matrix.

e A Haar random orthogonal matrix is a matrix drawn uniformly from
the set of all orthogonal matrices of a given size:
i) Generate a A ~ N(0,I)
i) [QR]=aqr(A)
iii) D = diag(sign(diag(R)))
iv) Q= QD
e For A four choices are considered:
i) flat: A=(3-2010—1)/(N—1) : i=1,2,..,N)
ii) poly: A=(i"2 : i=1,2,..,N)
i) exp: A=(0.7" : i=0,2,..,N—1)
)

iv) step: A= (1,..,1,1073,...,1073)
—— N ——
50 times N—-50 times



Computational Performance

e Apply the estimators to a random PSD matrix with exponentially
decreasing eigenvalue
e Run 1000 trails for feasible m

e compute the averaged error of the trace per estimator
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Figure: Computational performance of different trace estimators’
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