Sketching Lecture 8

F. M. Faulstich

02/02/2024

What is sketching?

It is a dimension reduction:

- Let $\mathbf{A} \in \mathbb{F}^{n \times m}$.

A matrix $\mathbf{S} \in \mathbb{F}^{d \times n}$ with $d \ll n$ is called a sketching matrix. We sketch A by applying SA

What is sketching?

It is a dimension reduction:

- Let $\mathbf{A} \in \mathbb{F}^{n \times m}$.

A matrix $\mathbf{S} \in \mathbb{F}^{d \times n}$ with $d \ll n$ is called a sketching matrix. We sketch \mathbf{A} by applying $\mathbf{S A}$

- Consider $\mathbf{A}=\left[\mathbf{a}_{n}|\ldots| \mathbf{a}_{m}\right]$. The matrix \mathbf{S} is a good sketch if

$$
(1-\varepsilon)\left\|\mathbf{a}_{i}\right\| \leq\left\|\mathbf{S a}_{i}\right\| \leq(1+\varepsilon)\left\|\mathbf{a}_{i}\right\|
$$

the lengths of the vectors are preserved.
(Distortion condition)

- In linear algebra, we want to sketch

$$
\operatorname{Im}(\mathbf{A})=\left\{\mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{F}^{m}\right\}
$$

- There exists sketching matrices that achieve ε distortion for $\operatorname{Im}(\mathbf{A})$ with an output dimension

$$
d \approx m / \varepsilon^{2}
$$

Sketching matrices

Sketching is not unique!

Sketching matrices

- Random projections
- Johnson-Lindenstrauss lemma:

Given $0<\varepsilon<1$, a set X of $m \in \mathbb{Z}_{\geq 1}$ points in $\mathbb{R}^{N}\left(N \in \mathbb{Z}_{\geq 0}\right)$, and an integer $n>8(\ln m) / \varepsilon^{2}$, there exists a linear map $f: \mathbb{R}^{N^{-}} \rightarrow \mathbb{R}^{n}$ such that

$$
(1-\varepsilon)\|u-v\|^{2} \leq\|f(u)-f(v)\|^{2} \leq(1+\varepsilon)\|u-v\|^{2}
$$

for all $u, v \in X$.
"a small set of points in high-dimensional space can be embedded into a lower-dimensional space in such a way that the distances between the points are nearly preserved."

Gaussian Embeddings

- $\mathbb{F}^{d \times n} \ni \mathbf{S} \sim \mathcal{N}\left(\mathbf{0}, \frac{1}{d} \mathbf{I}\right)$, i.e., the entries of \mathbf{S} are i.i.d. $\mathcal{N}\left(0, \frac{1}{d}\right)$
- Sketches $\operatorname{Im}(\mathbf{A})$ well
- Benefits:

Easy to code
Requires only the standard matrix product choose $d \approx m / \varepsilon^{2}$

- Downsides:

Sketching a vector $\mathbf{a} \in \mathbb{F}^{n} \operatorname{costs} \mathcal{O}(d n)$
Additional storage required for \mathbf{S}

Subsampled Randomized Trigonometric Transforms (SRTT)

- Ansatz

$$
\mathbf{S}=\sqrt{\frac{n}{d}} \mathbf{R F D}
$$

where:

- $\mathbf{D} \in \mathbb{F}^{n \times n}$ diagonal with Rademacher i.i.d. entries
- $\mathbf{F} \in \mathbb{F}^{n \times n}$ fast trigonometric transform e.g. discrete cosine transform
- $\mathbf{R} \in \mathbb{F}^{d \times n}$ is a selection matrix.
- Benefits:

Sketching a vector $\mathbf{a} \in \mathbb{F}^{n} \operatorname{costs} \mathcal{O}(n \log (n))$

- Drawbacks:

SRTT requires a good implementation of a fast trigonometric transform.
choose $d \approx(m \log (m)) / \varepsilon^{2}$

Discrete cosine transform (DCT)

- Similar to discrete Fourier transform but real valued coefficients
- DCT-II: Let $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{y}_{k}=\sum_{i=0}^{n-1} \mathbf{x}_{i} \cos \left(\frac{\pi}{n}\left(i+\frac{1}{2}\right) k\right) \quad \text { for } k=0, \ldots, n-1
$$

- Can be implemented fast! $\mathcal{O}(n \log (n))$

SRTT (MATLAB)

```
function [c] = SRTT_sketch(b,d)
    n = length(b);
    signs = 2*randi(2,n,1)-3; % diagonal entries of D (Rademacher)
    idx = randsample(n,d); % indices i_1,...,i_d defining R
    % Multiply S against b
    c = signs .* b; % multiply by D
    c = dct(c); % multiply by F
    c = c(idx); % multiply by R
    c = sqrt(n/d) * c; % scale
end
```


Sparse Sign Embeddings (SSE)

- Ansatz

$$
\mathbf{S}=\frac{1}{\sqrt{\zeta}}\left[\mathbf{s}_{1}|\ldots| \mathbf{s}_{n}\right]
$$

$\mathbf{s}_{i} \in \mathbb{F}^{d}$ are random vectors with $\mathbb{N} \ni \zeta$ many Rademacher entries. In practice, ζ is small like 8.

- Benefits:

Using a sparse library \mathbf{S} can applied super fast! $\mathcal{O}(n)$ or $\mathcal{O}(n \log (\mathrm{~d}))$
With a good sparse matrix library, sparse sign embeddings are often the fastest sketching matrix by a wide margin

- Drawbacks:

Larger storage than SRTT: $\mathcal{O}(\zeta n)$ vs $\mathcal{O}(n)$

Comparison (time)

We compare:

- Construction: The time required to generate the sketching matrix \mathbf{S}.
- Vector apply. The time to apply the sketch to a single vector
- Matrix apply. The time to apply the sketch to an $n \times 200$ matrix Settings and parameters:
- We will test with input dimension $n=10^{6}$ and $d=400$.
- We use SRTT with DCT
- We use $\zeta=8$ for SSE

Comparison (time)

Averaged times over 20 runs:

Time (sec)	Gaussian	SRTT	Sparse sign
Construction	2.7	0.0052	0.038
Vector apply	0.32	0.011	0.0031
Matrix apply	5.9	1.63	0.079

Conclusion:

- SSE are the fastest sketching matrices by a wide margin!
- For an "end-to-end" workflow involving generating the sketching matrix $\mathbf{S} \in \mathbb{R}^{400 \times 10^{6}}$ and applying it to a matrix $\mathbf{A} \in \mathbb{R}^{10^{6} \times 200}$, SSE are 14 x faster than SRTTs and 73 x faster than Gaussian embeddings.

How to use sketching?

Sketch-and-solve:

- Apply sketch to perform a dimension reduction
- Apply conventional numerical linear algebra tools

Example: Least-squares problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{m}}\|\mathbf{A x}-\mathbf{b}\|
$$

- What do we sketch?
- We sketch: A and b
- Then solve

$$
\min _{\hat{\mathbf{x}} \in \mathbb{R}^{m}}\|(\mathbf{S A}) \hat{\mathbf{x}}-\hat{\mathbf{b}}\|
$$

Does this work?

- Let \mathbf{x}_{*} be the solution to

$$
\min _{\mathbf{x} \in \mathbb{R}^{m}}\|\mathbf{A x}-\mathbf{b}\|
$$

and let $\hat{\mathbf{x}}$ be the sketch-and-solve solution

- Using the distortion condition we get

$$
\|\mathbf{A} \hat{\mathbf{x}}-\mathbf{b}\| \leq \frac{1+\varepsilon}{1-\varepsilon}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|
$$

- for $\varepsilon=1 / 3$ this yields

$$
\begin{aligned}
& \|\mathbf{A} \hat{\mathbf{x}}-\mathbf{b}\| \leq 2\left\|\mathbf{A} \mathbf{x}_{*}-\mathbf{b}\right\| \\
& \Rightarrow \text { Good? Bad? }
\end{aligned}
$$

Numerics

Experiment:

- Consider a least-squares problem of size 10,000 by 100 with condition number 10^{8} and residual norm 10^{-4}
- Generate $\operatorname{SSE} d=400$ with $\varepsilon \approx 1 / 2$

Findings:

- Rsidual norms:
- sketch-and-solve: 1.13e-4
- direct: 1.00e-4
- Forward errors:
- sketch-and-solve: $1.06 \mathrm{e}+3$
- direct: 8.08e-7

Conclusion:
If a small enough residual is all that is needed, then sketch-and-solve is perfectly adequate. If a small forward error is needed, sketch-and-solve can be quite bad.

Can we do better?

- Sketch-and-solve is a fast way to get a low-accuracy solution to a least-squares problem
- How about iterative methods?
- Observer that

$$
\mathbf{S A}=\mathbf{Q R} \Rightarrow \mathbf{A}^{\top} \mathbf{A} \approx(\mathbf{S A})^{\top}(\mathbf{S A})=\mathbf{R}^{\top} \mathbf{Q}^{\top} \mathbf{Q} \mathbf{R}=\mathbf{R}^{\top} \mathbf{R}
$$

- Using normal equations we can then solve the LSP iteratively
i) Solving

$$
\left(\mathbf{A}^{\top} \mathbf{A}\right) \mathbf{x}=\mathbf{A}^{\top} \mathbf{b} \Rightarrow \mathbf{x} \approx \mathbf{x}_{1}=\mathbf{R}^{-1} \mathbf{R}^{-\top} \mathbf{A}^{\top} \mathbf{b}
$$

ii) Solve for the resiudal

$$
\mathbf{A}^{\top} \mathbf{A}\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{A}^{\top}\left(\mathbf{b}-\mathbf{A} \mathbf{x}_{0}\right) \Rightarrow \mathbf{x} \approx \mathbf{x}_{2}=\mathbf{x}_{1}+\mathbf{R}^{-1} \mathbf{R}^{-\top} \mathbf{A}^{\top}\left(\mathbf{b}-\mathbf{A} \mathbf{x}_{1}\right)
$$

n) $\mathbf{x}_{n}=\mathbf{x}_{n-1}+\mathbf{R}^{-1} \mathbf{R}^{-\top} \mathbf{A}^{\top}\left(\mathbf{b}-\mathbf{A} \mathbf{x}_{n-1}\right)$
\Rightarrow Iterative sketching

Comparison

