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What is sketching?
It is a dimension reduction:

• Let A ∈ Fn×m.
A matrix S ∈ Fd×n with d� n is called a sketching matrix. We
sketch A by applying SA

• Consider A = [an|...|am]. The matrix S is a good sketch if

(1− ε)‖ai‖ ≤ ‖Sai‖ ≤ (1 + ε)‖ai‖
the lengths of the vectors are preserved.
(Distortion condition)
• In linear algebra, we want to sketch

Im(A) = {Ax | x ∈ Fm}
• There exists sketching matrices that achieve ε distortion for Im(A)

with an output dimension

d ≈ m/ε2
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Sketching matrices

Sketching is not unique!
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Sketching matrices

• Random projections

• Johnson-Lindenstrauss lemma:
Given 0 < ε < 1, a set X of m ∈ Z≥1 points in RN (N ∈ Z≥0), and
an integer n > 8(lnm)/ε2, there exists a linear map f : RN → Rn

such that

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

for all u, v ∈ X.

“a small set of points in high-dimensional space can be embedded
into a lower-dimensional space in such a way that the distances

between the points are nearly preserved.”
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Gaussian Embeddings

• Fd×n 3 S ∼ N (0, 1dI), i.e., the entries of S are i.i.d. N (0, 1d)

• Sketches Im(A) well

• Benefits:
Easy to code
Requires only the standard matrix product
choose d ≈ m/ε2

• Downsides:
Sketching a vector a ∈ Fn costs O(dn)
Additional storage required for S
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Subsampled Randomized Trigonometric Transforms (SRTT)

• Ansatz

S =

√
n

d
RFD

where:
I D ∈ Fn×n diagonal with Rademacher i.i.d. entries [O(n)]
I F ∈ Fn×n fast trigonometric transform

e.g. discrete cosine transform
I R ∈ Fd×n is a selection matrix. [O(d)]

Let {i1, ..., id} ⊂ [[n[], then Rb := (bi1 , ..., bid)

• Benefits:
Sketching a vector a ∈ Fn costs O(nlog(n))

• Drawbacks:
SRTT requires a good implementation of a fast trigonometric
transform.
choose d ≈ (mlog(m))/ε2
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Discrete cosine transform (DCT)

• Similar to discrete Fourier transform but real valued coefficients

• DCT–II: Let x ∈ Rn

yk =

n−1∑
i=0

xi cos

(
π

n

(
i+

1

2

)
k

)
for k = 0, ..., n− 1

• Can be implemented fast! O(n log(n))
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SRTT (MATLAB)
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Sparse Sign Embeddings (SSE)

• Ansatz

S =
1√
ζ

[s1|...|sn]

si ∈ Fd are random vectors with N 3 ζ many Rademacher entries.
In practice, ζ is small like 8.

• Benefits:
Using a sparse library S can applied super fast! O(n) or O(nlog(d))

With a good sparse matrix library, sparse sign embeddings are often
the fastest sketching matrix by a wide margin

• Drawbacks:
Larger storage than SRTT: O(ζn) vs O(n)
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Comparison (time)

We compare:

• Construction: The time required to generate the sketching matrix S.

• Vector apply. The time to apply the sketch to a single vector

• Matrix apply. The time to apply the sketch to an n× 200 matrix

Settings and parameters:

• We will test with input dimension n = 106 and d = 400.

• We use SRTT with DCT

• We use ζ = 8 for SSE
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Comparison (time)

Averaged times over 20 runs:

Conclusion:

• SSE are the fastest sketching matrices by a wide margin!

• For an “end-to-end” workflow involving generating the sketching
matrix S ∈ R400×106 and applying it to a matrix A ∈ R106×200, SSE
are 14x faster than SRTTs and 73x faster than Gaussian embeddings.
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How to use sketching?

Sketch-and-solve:

• Apply sketch to perform a dimension reduction

• Apply conventional numerical linear algebra tools

Example: Least-squares problem

min
x∈Rm

‖Ax− b‖

• What do we sketch?

• We sketch: A and b

• Then solve
min
x̂∈Rm

‖(SA)x̂− b̂‖
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Does this work?

• Let x∗ be the solution to

min
x∈Rm

‖Ax− b‖

and let x̂ be the sketch-and-solve solution

• Using the distortion condition we get

‖Ax̂− b‖ ≤ 1 + ε

1− ε
‖Ax− b‖

• for ε = 1/3 this yields

‖Ax̂− b‖ ≤ 2‖Ax∗ − b‖

⇒ Good? Bad?
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Numerics
Experiment:

• Consider a least-squares problem of size 10,000 by 100 with condition
number 108 and residual norm 10−4

• Generate SSE d = 400 with ε ≈ 1/2

Findings:
• Rsidual norms:

I sketch-and-solve: 1.13e-4
I direct: 1.00e-4

• Forward errors:
I sketch-and-solve: 1.06e+3
I direct: 8.08e-7

Conclusion:

If a small enough residual is all that is needed, then sketch-and-solve is
perfectly adequate. If a small forward error is needed, sketch-and-solve

can be quite bad.
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Can we do better?

• Sketch-and-solve is a fast way to get a low-accuracy solution to a
least-squares problem

• How about iterative methods?

• Observer that

SA = QR⇒ A>A ≈ (SA)>(SA) = R>Q>QR = R>R

• Using normal equations we can then solve the LSP iteratively

i) Solving
(A>A)x = A>b⇒ x ≈ x1 = R−1R−>A>b

ii) Solve for the resiudal

A>A(x−x0) = A>(b−Ax0)⇒ x ≈ x2 = x1 +R−1R−>A>(b−Ax1)

...
n) xn = xn−1 + R−1R−>A>(b−Axn−1)

⇒ Iterative sketching
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Comparison


