Sketching Lecture 8

F. M. Faulstich

02/02/2024

What is sketching?

It is a dimension reduction:

• Let $\mathbf{A} \in \mathbb{F}^{n \times m}$.

A matrix $\mathbf{S} \in \mathbb{F}^{d \times n}$ with $d \ll n$ is called a sketching matrix. We sketch \mathbf{A} by applying \mathbf{SA}

What is sketching?

It is a dimension reduction:

• Let $\mathbf{A} \in \mathbb{F}^{n \times m}$.

A matrix $\mathbf{S} \in \mathbb{F}^{d \times n}$ with $d \ll n$ is called a sketching matrix. We sketch \mathbf{A} by applying \mathbf{SA}

• Consider $\mathbf{A} = [\mathbf{a}_n | ... | \mathbf{a}_m]$. The matrix \mathbf{S} is a good sketch if

 $(1-\varepsilon)\|\mathbf{a}_i\| \le \|\mathbf{S}\mathbf{a}_i\| \le (1+\varepsilon)\|\mathbf{a}_i\|$

the lengths of the vectors are preserved. (Distortion condition)

• In linear algebra, we want to sketch

$$\operatorname{Im}(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{F}^m\}$$

• There exists sketching matrices that achieve ε distortion for Im(A) with an output dimension

$$d\approx m/\varepsilon^2$$

Sketching matrices

Sketching is **not** unique!

Sketching matrices

- Random projections
- Johnson-Lindenstrauss lemma:

Given $0 < \varepsilon < 1$, a set X of $m \in \mathbb{Z}_{\geq 1}$ points in \mathbb{R}^N $(N \in \mathbb{Z}_{\geq 0})$, and an integer $n > 8(\ln m)/\varepsilon^2$, there exists a linear map $f : \mathbb{R}^N \to \mathbb{R}^n$ such that

$$(1-\varepsilon)\|u-v\|^2 \le \|f(u) - f(v)\|^2 \le (1+\varepsilon)\|u-v\|^2$$

for all $u, v \in X$.

"a small set of points in high-dimensional space can be embedded into a lower-dimensional space in such a way that the distances between the points are nearly preserved."

Gaussian Embeddings

- $\mathbb{F}^{d \times n} \ni \mathbf{S} \sim \mathcal{N}(\mathbf{0}, \frac{1}{d}\mathbf{I})$, i.e., the entries of \mathbf{S} are i.i.d. $\mathcal{N}(0, \frac{1}{d})$
- Sketches $Im(\mathbf{A})$ well
- Benefits:

Easy to code Requires only the standard matrix product choose $d\approx m/\varepsilon^2$

• Downsides:

Sketching a vector $\mathbf{a} \in \mathbb{F}^n$ costs $\mathcal{O}(dn)$ Additional storage required for \mathbf{S} Subsampled Randomized Trigonometric Transforms (SRTT)

• Ansatz

$$\mathbf{S} = \sqrt{rac{n}{d}} \mathbf{RFD}$$

where:

- ▶ $\mathbf{D} \in \mathbb{F}^{n \times n}$ diagonal with Rademacher i.i.d. entries
- $\mathbf{F} \in \mathbb{F}^{n \times n}$ fast trigonometric transform
 - e.g. discrete cosine transform
- ▶ $\mathbf{R} \in \mathbb{F}^{d \times n}$ is a selection matrix. Let $\{i_1, ..., i_d\} \subset [n]$, then $\mathbf{Rb} := (b_{i_1}, ..., b_{i_d})$
- Benefits:

Sketching a vector $\mathbf{a} \in \mathbb{F}^n$ costs $\mathcal{O}(n\log(n))$

• Drawbacks:

SRTT requires a good implementation of a fast trigonometric transform.

choose $d\approx (m{\rm log}(m))/\varepsilon^2$

 $[\mathcal{O}(n)]$

 $[\mathcal{O}(d)]$

Discrete cosine transform (DCT)

Similar to discrete Fourier transform but real valued coefficients
DCT−II: Let x ∈ ℝⁿ

$$\mathbf{y}_{k} = \sum_{i=0}^{n-1} \mathbf{x}_{i} \cos\left(\frac{\pi}{n} \left(i + \frac{1}{2}\right) k\right) \quad \text{for } k = 0, ..., n-1$$

• Can be implemented fast! $\mathcal{O}(n \log(n))$

SRTT (MATLAB)

```
function [c] = SRTT_sketch(b,d)
n = length(b);
signs = 2*randi(2,n,1)-3; % diagonal entries of D (Rademacher)
idx = randsample(n,d); % indices i_1,...,i_d defining R
% Multiply S against b
c = signs .* b; % multiply by D
c = dct(c); % multiply by F
c = c(idx); % multiply by R
c = sqrt(n/d) * c; % scale
```

end

Sparse Sign Embeddings (SSE)

• Ansatz

$$\mathbf{S} = rac{1}{\sqrt{\zeta}} [\mathbf{s}_1 | ... | \mathbf{s}_n]$$

 $\mathbf{s}_i \in \mathbb{F}^d$ are random vectors with $\mathbb{N} \ni \zeta$ many Rademacher entries. In practice, ζ is small like 8.

• Benefits:

Using a sparse library **S** can applied super fast! $\mathcal{O}(n)$ or $\mathcal{O}(n\log(d))$ With a good sparse matrix library, sparse sign embeddings are often the fastest sketching matrix by a wide margin

• Drawbacks:

Larger storage than SRTT: $\mathcal{O}(\zeta n)$ vs $\mathcal{O}(n)$

Comparison (time)

We compare:

- Construction: The time required to generate the sketching matrix \mathbf{S} .
- Vector apply. The time to apply the sketch to a single vector
- Matrix apply. The time to apply the sketch to an $n\times 200$ matrix

Settings and parameters:

- We will test with input dimension $n = 10^6$ and d = 400.
- We use SRTT with DCT
- We use $\zeta = 8$ for SSE

Comparison (time)

Averaged times over 20 runs:

Time (sec)	Gaussian	SRTT	Sparse sign
Construction	2.7	0.0052	0.038
Vector apply	0.32	0.011	0.0031
Matrix apply	5.9	1.63	0.079

Conclusion:

- SSE are the fastest sketching matrices by a wide margin!
- For an "end-to-end" workflow involving generating the sketching matrix $\mathbf{S} \in \mathbb{R}^{400 \times 10^6}$ and applying it to a matrix $\mathbf{A} \in \mathbb{R}^{10^6 \times 200}$, SSE are 14x faster than SRTTs and 73x faster than Gaussian embeddings.

How to use sketching?

Sketch-and-solve:

- Apply sketch to perform a dimension reduction
- Apply conventional numerical linear algebra tools

Example: Least-squares problem

$$\min_{\mathbf{x} \in \mathbb{R}^m} \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|$$

- What do we sketch?
- We sketch: \mathbf{A} and \mathbf{b}
- Then solve

$$\min_{\hat{\mathbf{x}} \in \mathbb{R}^m} \left\| (\mathbf{S}\mathbf{A}) \hat{\mathbf{x}} - \hat{\mathbf{b}} \right\|$$

Does this work?

• Let \mathbf{x}_* be the solution to

$$\min_{\mathbf{x} \in \mathbb{R}^m} \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|$$

and let $\hat{\mathbf{x}}$ be the sketch-and-solve solution

• Using the distortion condition we get

$$\|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\| \le \frac{1+\varepsilon}{1-\varepsilon} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$$

• for $\varepsilon = 1/3$ this yields

 $\|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\| \le 2\|\mathbf{A}\mathbf{x}_* - \mathbf{b}\|$ $\Rightarrow \text{Good? Bad?}$

Numerics

Experiment:

- Consider a least-squares problem of size 10,000 by 100 with condition number 10^8 and residual norm 10^{-4}
- Generate SSE d = 400 with $\varepsilon \approx 1/2$

Findings:

- Rsidual norms:
 - ▶ sketch-and-solve: 1.13e-4
 - ▶ direct: 1.00e-4
- Forward errors:
 - \blacktriangleright sketch-and-solve: 1.06e+3
 - ▶ direct: 8.08e-7

Conclusion:

If a small enough residual is all that is needed, then sketch-and-solve is perfectly adequate. If a small forward error is needed, sketch-and-solve can be quite bad.

Can we do better?

- Sketch-and-solve is a fast way to get a low-accuracy solution to a least-squares problem
- How about iterative methods?
- Observer that

$$\mathbf{S}\mathbf{A} = \mathbf{Q}\mathbf{R} \Rightarrow \mathbf{A}^{\top}\mathbf{A} \approx (\mathbf{S}\mathbf{A})^{\top}(\mathbf{S}\mathbf{A}) = \mathbf{R}^{\top}\mathbf{Q}^{\top}\mathbf{Q}\mathbf{R} = \mathbf{R}^{\top}\mathbf{R}$$

• Using normal equations we can then solve the LSP iteratively i) Solving

$$(\mathbf{A}^{\top}\mathbf{A})\mathbf{x} = \mathbf{A}^{\top}\mathbf{b} \Rightarrow \mathbf{x} \approx \mathbf{x}_1 = \mathbf{R}^{-1}\mathbf{R}^{-\top}\mathbf{A}^{\top}\mathbf{b}$$

ii) Solve for the residual

Comparison

