

The overdetermined linear least squares problem is given

$$\mathbf{x} = \underset{\mathbf{y} \in \mathbb{R}^n}{\operatorname{arg\,min}} \|\mathbf{b} - \mathbf{A}\mathbf{y}\|$$

for $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$

Algorithm - Iterative Sketching

- (1) $\mathbf{S} \leftarrow d \times m$
- (2) $\mathbf{B} \leftarrow \mathbf{SA}$
- (3) $(\mathbf{Q}, \mathbf{R}) \leftarrow QR(\mathbf{B}, \text{'econ'})$
- (4) $\mathbf{x}_0 \leftarrow \mathbf{R}^{-1}(\mathbf{Q}^*(\mathbf{Sb}))$
- (5) for i = 0 : q 1
- $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \mathbf{R}^{-1} \mathbf{R}^{-\top} \mathbf{A}^{\top} (\mathbf{b} \mathbf{A} \mathbf{x}_i)$ (6)(6) Update rule

(7) end

0

- Sketching matrix (1)
- (2) Applying the sketch

(3,4) Householder QR

Algorithm - Justification

- (1) $(\mathbf{A}^T \mathbf{A})\mathbf{x} = \mathbf{A}^T \mathbf{b}$
- (2) $(\mathbf{SA})^T(\mathbf{SA}) \approx \mathbf{A}^T \mathbf{A}$
- (3) $\mathbf{A}^T \mathbf{A} (\mathbf{x} \mathbf{x}_i) = \mathbf{A}^T (\mathbf{b} \mathbf{A} \mathbf{x}_i)$
- (4) $(\mathbf{SA})^T (\mathbf{SA}) d_i = \mathbf{A}^T (\mathbf{b} \mathbf{A}\mathbf{x}_i)$
- (5) where, $\mathbf{x} \approx \mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{d}_i$

- (6) $\mathbf{SA} = \mathbf{QR}$
- (7) $(\mathbf{SA})^T(\mathbf{SA}) = \mathbf{R}^T \mathbf{R}$
- (8) $\mathbf{d}_i = \mathbf{R}^{-1}\mathbf{R}^{-T}\mathbf{A}^T(\mathbf{b} \mathbf{A}\mathbf{x}_i)$
- (9) $\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{R}^{-1}\mathbf{R}^{-T}\mathbf{A}^T(\mathbf{b} \mathbf{A}\mathbf{x}_i)$

Notational Notes

***** Relative Forward Error:
$$FE(\hat{\mathbf{x}}) = \frac{\|\mathbf{x} - \hat{\mathbf{x}}\|}{\|\mathbf{x}\|}$$

***** Relative Residual:
$$RE(\hat{\mathbf{x}}) = \frac{\|\mathbf{r}(\mathbf{x}) - \mathbf{r}(\hat{\mathbf{x}})\|}{\|\mathbf{r}(\mathbf{x})\|}$$
 where $\mathbf{r}(\mathbf{y}) = \mathbf{b} - \mathbf{A}\mathbf{y}$

$$\mathbf{\overset{\bullet}{Relative Backward Error:}} \ BE(\hat{\mathbf{x}}) = \min \left\{ \frac{\| \mathbf{\Delta A} \|_{F}}{\| \mathbf{A} \|_{F}} : \hat{\mathbf{x}} = \underset{\mathbf{v} \in \mathbb{R}^{n}}{\arg \min} \| \mathbf{b} - (\mathbf{A} + \mathbf{\Delta A}) \mathbf{v} \| \right\}$$

• Machine Epsilon:
$$u = \epsilon_{mach} \approx 10^{-16}$$

Condition Number:
$$\kappa(\mathbf{A}) = \kappa = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| = \sigma_{\max}(\mathbf{A}) / \sigma_{\min}(\mathbf{A})$$

If BE is small, then computed solution is the *true solution to the nearly the right least-square problem* Informally, if BE \cong *u* then the algorithm is *backwards stable*

Comparing with Backward Stable Algo

- ✓ Householder QR is backwards stable i.e. $\hat{\mathbf{x}} = \underset{y \in \mathbb{R}^n}{\arg \min} \| (\mathbf{b} + \Delta \mathbf{b}) (\mathbf{A} + \Delta \mathbf{A}) \mathbf{y} \|$ with perturbations of size $\|\Delta \mathbf{A}\| \le cu \|\mathbf{A}\|$ and $\|\Delta \mathbf{b}\| \le cu \|\mathbf{b}\|$ provided cu < 1
- Main Result: iterative sketching has forward errors and residual errors comparable to a backward stable algorithm (e.g. Householder QR)

But what are the forward and residual errors for a backward stable algorithm?

Wedin's Perturbation Theorem

0

Let $\mathbf{A}, \Delta \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b}, \Delta \mathbf{b} \in \mathbb{R}^{m}$ and suppose that $\|\Delta \mathbf{A}\| \le \epsilon \|\mathbf{A}\|$ and $\|\Delta \mathbf{b}\| \le \epsilon \|\mathbf{b}\|$ for some (0, 1). Then set

$$\begin{aligned} \mathbf{x} &= \underset{\mathbf{y} \in \mathbb{R}^n}{\arg\min} \|\mathbf{b} - \mathbf{A}\mathbf{y}\| \\ \mathbf{\hat{x}} &= \underset{\mathbf{y} \in \mathbb{R}^n}{\arg\min} \|(\mathbf{b} + \mathbf{\Delta}\mathbf{b}) - (\mathbf{A} + \mathbf{\Delta}\mathbf{A})\mathbf{y}\| \end{aligned}$$

Then if $\epsilon \kappa(\mathbf{A}) \leq 0.1$

$$\begin{split} \|\mathbf{x} - \hat{\mathbf{x}}\| &\leq 2.23\kappa(\mathbf{A}) \left(\|\mathbf{x}\| + \frac{\kappa(\mathbf{A})}{\|\mathbf{A}\|} \|\mathbf{r}(\mathbf{x})\| \right) \epsilon \\ \|\mathbf{r}(\mathbf{x}) - \mathbf{r}(\hat{\mathbf{x}})\| &\leq 2.23 \left(\|\mathbf{A}\| \|\mathbf{x}\| + \kappa(\mathbf{A}) \|\mathbf{r}(\mathbf{x})\| \right) \epsilon \end{split}$$

Results from Wedin's Theorem

Assuming κu sufficiently small, then the solution $\hat{\mathbf{x}}$ to a *backwards stable* least square solver satisfies

$$\begin{aligned} \|\mathbf{x} - \hat{\mathbf{x}}\| &\leq c \prime \kappa(\mathbf{A}) \left(\|\mathbf{x}\| + \frac{\kappa}{\|\mathbf{A}\|} \|\mathbf{r}(\mathbf{x})\| \right) u \\ |\mathbf{r}(\mathbf{x}) - \mathbf{r} \hat{\mathbf{x}}\| &\leq c \prime \left(\|\mathbf{A}\| \|\mathbf{x}\| + \kappa \|\mathbf{r}(\mathbf{x})\| \right) u \end{aligned}$$

An algorithm is said to be forward stable if the computed solution satisfies bounds of this form

Theorem VI: Iterative sketching is forward stable

Let $\mathbf{S} \in \mathbb{R}^{d \times m}$ be a subspace embedding for range([A b]) with distortion $\epsilon \in (0, 0.29]$. There exists a constant $c_1 > 0$ which depends polynomially on m, n, and d such that $c_1 \kappa u < 1$ and multiplication by \mathbf{S} is forward stable, then the numerically computed iterates $\hat{\mathbf{x}}_i$ by Iterative Method satisfy bounds

$$\|\mathbf{x} - \hat{\mathbf{x}}_i\| \le 20\sqrt{\epsilon}\kappa(g_{IS} + c_1\kappa u)^i \frac{\|\mathbf{r}(\mathbf{x})\|}{\|\mathbf{A}\|} + c_1\kappa u \left[\|\mathbf{x}\| + \frac{\kappa}{\|\mathbf{A}\|}\|\mathbf{r}(\mathbf{x})\|\right]$$
$$\|\mathbf{r}(\mathbf{x}) - \mathbf{r}(\hat{\mathbf{x}}_i)\| \le 20\sqrt{\epsilon}(g_{IS} + c_1\kappa u)^i \|\mathbf{r}(\mathbf{x})\| + c_1u \left[\|\mathbf{A}\|\|\mathbf{x}\| + \kappa \|\mathbf{r}(\mathbf{x})\|\right]$$

In particular, if $g_{IS} + c_i \kappa u \leq 0.9$ then the iterative sketching produces a solution $\hat{\mathbf{x}}$ such it satisfies the forward stability error bounds

(Informal Theorem I) In FPA, iterative sketching produces iteratives $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_i, \ldots$ with errors $\|\mathbf{x} - \hat{\mathbf{x}}_i\|$ and residual errors $\|\mathbf{r}(\mathbf{x}) - \mathbf{r}(\hat{\mathbf{x}}_i)\|$ that converge geometrically until they reach roughly the same accuracy as Householder QR.

Convergence - Theorem V

Let **S** be a subspace embedding with distortion $0 < \epsilon < 1 - \frac{1}{\sqrt{2}}$. Then the \mathbf{x}_i satisfy the following bounds,

(1) $||\mathbf{x} - \mathbf{x}_i|| < (8 - 2\sqrt{2})\sqrt{\epsilon}\kappa g_{IS}^i \frac{||\mathbf{r}(\mathbf{x})||}{||\mathbf{A}||}$ (2) $||\mathbf{r}(\mathbf{x}) - \mathbf{r}(\mathbf{x}_i)|| < (8 - 2\sqrt{2})\sqrt{\epsilon}g_{IS}^i ||\mathbf{r}(\mathbf{x})||$

The convergence rate g_{IS} is,

$$g_{IS} = \frac{\epsilon(2-\epsilon)}{(1-\epsilon)^2} \le (2+\sqrt{2})\epsilon$$

Lemma: Singular Value Bounds

Let **S** be a subspace embedding for range(**A**) with distortion $\epsilon \in (0, 1)$ and **QR** = **SA** be a reduced **QR** decomposition of **SA**. Then **R** satisfies the bounds

 $\sigma_{\max}(\mathbf{R}) \le (1+\epsilon)\sigma_{\max}(\mathbf{A})$ $\sigma_{\min}(\mathbf{R}) \ge (1-\epsilon)\sigma_{\min}(\mathbf{A})$

In addition, \mathbf{AR}^{-1} satisfies the bounds

$$\sigma_{\max}(\mathbf{A}\mathbf{R}^{-1}) \le \frac{1}{1-\epsilon}$$
$$\sigma_{\min}(\mathbf{A}\mathbf{R}^{-1}) \ge \frac{1}{1+\epsilon}$$

Proof of Lemma

$$\sigma_{\max}(\mathbf{R}) \le (1+\epsilon)\sigma_{\max}(\mathbf{A})$$

0

(5)

(6)

Recall, $\mathbf{SA} = \mathbf{QR}$ and \mathbf{S} is a subspace embedding for subspace V such that $(1 - \epsilon) \|\mathbf{v}\| \le \|\mathbf{Sv}\| \le (1 + \epsilon) \|\mathbf{v}\|$ for $\epsilon \in (0, 1)$ and $\mathbf{v} \in V$.

As \mathbf{Q} unitary, \mathbf{QR} and \mathbf{R} have the same singular values. Establishing the upper bound,

$$\sigma_{\max}(\mathbf{R}) = \sigma_{\max}(\mathbf{QR}) = \sigma_{\max}(\mathbf{SA}) \tag{1}$$

$$\sigma_{\max}(\mathbf{S}\mathbf{A}) = \|\mathbf{S}\mathbf{A}\| \tag{2}$$

$$= \max_{\|\mathbf{v}\|=1} \|\mathbf{SAv}\| \tag{3}$$

$$\leq (1+\epsilon) \max_{\|\mathbf{v}\|=1} \|\mathbf{A}\mathbf{v}\| \tag{4}$$

$$=(1+\epsilon)\sigma_{\max}(\mathbf{A})$$

$$\sigma_{\min}(\mathbf{R}) \ge (1-\epsilon)\sigma_{\min}(\mathbf{A})$$

0

Establishing the lower bound,

$$\sigma_{\min}(\mathbf{R}) = \sigma_{\min}(\mathbf{S}\mathbf{A}) \tag{1}$$

$$= \min_{\|\mathbf{v}\|=1} \|\mathbf{S}\mathbf{A}\mathbf{v}\| \tag{2}$$

$$\geq (1-\epsilon) \min_{\|\mathbf{v}\|=1} \|\mathbf{A}\mathbf{v}\| \tag{3}$$

$$= (1 - \epsilon)\sigma_{\min}(\mathbf{A}) \tag{4}$$

Proof cont.

$$\sigma_{\max}(\mathbf{A}\mathbf{R}^{-1}) \leq rac{1}{1-\epsilon}$$

For the bounds of \mathbf{AR}^{-1} , establishing the upper bounds

$$\sigma_{\max}(\mathbf{A}\mathbf{R}^{-1}) = \max_{\|\mathbf{v}\|=1} \|\mathbf{A}\mathbf{R}^{-1}\mathbf{v}\|$$

$$\leq \frac{1}{1-\epsilon} \max_{\|\mathbf{v}\|=1} \|\mathbf{S}\mathbf{A}\mathbf{R}^{-1}\mathbf{v}$$

$$= \frac{1}{1-\epsilon} \max_{\|\mathbf{v}\|=1} \|\mathbf{Q}\mathbf{v}\|$$

$$= \frac{1}{1-\epsilon} \sigma_{\max}(\mathbf{Q})$$

$$= \frac{1}{1-\epsilon}$$

 $\sigma_{\min}(\mathbf{A}\mathbf{R}^{-1}) \ge \frac{1}{1+\epsilon}$

Establishing the lower bound,

 σ_1

$$\begin{split} \min(\mathbf{A}\mathbf{R}^{-1}) &= \min_{\|\mathbf{v}\|=1} \|\mathbf{A}\mathbf{R}^{-1}\mathbf{v}\| \\ &\geq \frac{1}{1+\epsilon} \min_{\|\mathbf{v}\|=1} \|\mathbf{S}\mathbf{A}\mathbf{R}^{-1}\mathbf{v} \\ &= \frac{1}{1+\epsilon} \min_{\|\mathbf{v}\|=1} \|\mathbf{Q}\mathbf{v}\| \\ &= \frac{1}{1+\epsilon} \sigma_{\min}(\mathbf{Q}) \\ &= \frac{1}{1+\epsilon} \end{split}$$

Lemma: Sketch-and-Solve

In the sketch-and-solve, compute

$$\mathbf{x}_0 = rgmin_{\mathbf{y} \in \mathbb{R}^n} \| (\mathbf{S}\mathbf{A})\mathbf{y} - \mathbf{S}\mathbf{b} \|$$

Computed numerically,

 $\mathbf{x}_0 = \mathbf{R}^{-1}(\mathbf{Q}^*(\mathbf{Sb}))$

Then, we have the guarantee that

$$\|\mathbf{r}(\mathbf{x}_0)\| \le \frac{1+\epsilon}{1-\epsilon} \|\mathbf{r}(\mathbf{x})\| \tag{1}$$

$$\|\mathbf{r}(\mathbf{x}) - \mathbf{r}(\mathbf{x}_0)\| \le \frac{2\sqrt{\epsilon}}{1-\epsilon} \|\mathbf{r}(\mathbf{x})\|$$
(2)

$$\|\mathbf{x} - \mathbf{x}_0\| \le \frac{2\sqrt{\epsilon}}{1 - \epsilon} \frac{\kappa}{\|\mathbf{A}\|} \|\mathbf{r}(\mathbf{x})\|$$
(3)

$$\begin{array}{l} \textbf{Equation of the constraint of the const$$

B

0

0

Thanks!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

