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1 Introduction to quantum mechanics

The theory of quantum mechanics explores the behavior of matter and energy at atomic
scales. At these scales, the classical rules of physics we are familiar with no longer apply. This
introduction is designed for graduate students in mathematics with little to no background
in physics. We will use the famous double-slit experiment as a gateway to uncover key ideas
in quantum mechanics, culminating in the electronic Schrödinger equation, a fundamental
tool for studying particles at the atomic level. We will come to the conclusion that electrons
behave like both particles and waves which is know as the particle-wave duality. As most
readers will be – at least at the intuitive level – familiar with classical mechanics, we will
begin our exposition with classical physics and then transition into the quantum theory of
particles.

Point particles vs classical waves

In classical physics, waves and point particles are two very different models for physical sys-
tems, each with an exceptionally large range of applications.

Point particles which are idealized particles with no spatial extension are very commonly
used in physics to describe the behavior of (uniform) rigid body dynamics, such as the “projec-
tile motion” or “billiard mechanics”. The notion of (point) particles is governed by Newtonian
mechanics going back to the 17th century, which is manifested in three Newtonian Law’s of
motion

1. A body remains at rest, or in motion at a constant speed in a straight line, except
insofar as it is acted upon by a force.

2. At any instant of time, the net force on a body is equal to the rate at which the body’s
momentum is changing with time.

F “
dp

dt
“ m

dv

dt
“ ma (1)

3. If two bodies exert forces on each other, these forces have the same magnitude but
opposite directions.
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The describing quantities of (point) particles are (1) their mass, (2) their position, and
(3) their forces.

Classical waves are propagating dynamic disturbances, i.e., changes from an equilibrium
state. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some fre-
quency. When the entire waveform moves in one direction, it is said to be a traveling wave;
by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a
standing wave. In a standing wave, the amplitude of vibration has nulls at some positions
where the wave amplitude appears smaller or even zero. Commonly, a wave is described by a
scalar field

u : R3 ˆ Rě0 Ñ R ; pr, tq ÞÑ upr, tq (2)

assigning at any point in time t P R and any point in space r P R3 a magnitude upr, tq.
Classical waves are governed by the wave equation, i.e.,

B2u

Bt2
“ c2∆ru, (3)

where c P Rą0. Unlike point particles, waves have continuous values at many points in
space that vary with time. The spatial extent of waves can vary with time due to diffraction
or wave interferences, see Fig. 1. These are characteristic observations of waves.

(a) (b)

Figure 1: (a) Left panel shows diffraction of water wave on a single list. (b) Right panel
shows interference pattern of concentric waves.

Unlike waves, point particles do not exhibit diffraction or interference.

The Double-Slit Experiment

We will transition to atomic scales; imagine an apparatus where particles at the atomic scale,
such as electrons, are fired onto a detector, see Fig. 2

The particles can be individually detected and appear to behave like point particles in
classical physics. Now, imagine a setup where the particles are sent toward a barrier with two
small openings, called slits, see 3. Beyond the slits is a screen that detects where the particles
land.

We now consider two scenarios:
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Figure 2: electron beam

Graphics/DoubleSlit.png

Figure 3: electron beam

1. Blocking one slit: If we close one slit, the particles form a simple pattern on the screen
directly behind the open slit, see ??. This result again aligns with our expectation from
the point particle picture.

2. Opening both slits: With both slits open, we expect the result to be the sum of the
patterns from each slit. However, what we observe is far more surprising; a series of
bright and dark bands, called an interference pattern, similar to what we see if waves
(not particles) were passing through the slits, see 3.

This experiment shows that particles such as electrons behave like waves under certain
conditions. More surprisingly, if we place detectors at the slits to observe which slit the
individual electron passes through, see ??, the interference pattern disappears, and the elec-
trons behave like particles again. This puzzling behavior is at the heart of quantum mechanics.

But, how do we interpret this result and what does it mean for our understanding of
physics? The double-slit experiment suggests that particles have a dual nature: they can
behave like both, particles and waves. This is called the wave-particle duality challenging our
classical picture of physics in which these concepts are fundamentally different. The quantum
mechanical framework allows us to describe the interference pattern arising in the dual slit
experiment. Quantum mechanically, particles are characterized by a wave function, which de-
termines the probability of finding the particle in a particular location. As the name suggests,
the propagation of the particle’s wave function is governed by “some type of wave equation”.
In particular, when no measurement is made, the particle’s wave function spreads out like
a wave producing the wave-like interference patterns observed in the double-slit experiment.
However, when we measure which slit the particle goes through, the wave function “collapses”
into a specific location, and the interference pattern vanishes – the electron now behaves like
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a classical particle.

Mathematically, the wave function is a function in space and time, denoted by

ψ : Rm ˆ Rě0 Ñ C ; px, tq ÞÑ ψpx, tq (4)

wherem P N. The wave function is the central object in quantum mechanics that encapsulates
all the information about the system’s state. Its squared modulus is the probability density of
finding the particles at positions x P Rm at time t P Rě0, hence, ψ P L2pRmq for all t P Rě0.
The governing equation for the wave function is the Schrödinger equation, proposed by Erwin
Schrödinger in 1925 [?]. In it’s time-dependent form, the Schrödinger equation reads

i
Bψpx, tq

Bt
“ Hψpx, tq, (5)

where i is the imaginary unit and H is the Hamiltonian operator, representing the total energy
of the system of interest. For a particle moving in a potential V pxq, the Hamiltonian is

H “ ´
1

2
∇2 ` V pxq, (6)

where ´1
2∇

2 describes the kinetic energy, and V pxq describes the potential energy. In many
cases, however, we are interested in systems that do not change in time, such as electrons in
a stable atom or molecule. Here, the Schrödinger equation simplifies to

Hψpxq “ Eψpxq, (7)

where E describes the system’s energy. Narrowing down on the application to atoms and
molecules, we can specify the potential further. Consider a molecule with Nnuc nuclei and N
electrons, the wave function depends on both nuclear positions R “ pR1, ...,RNnucq P R3Nnuc

with RiR3 and the electronic positions r “ pr1, ..., rN q P R3N with ri P R3

HΨpr,Rq “ EΨpr,Rq (8)

where

H “ ´
ÿ

iPrrNss

1

2
∆ri ´

ÿ

iPrrNss

ÿ

jPrrNnucss

Zj
}ri ´ Rj}

`
1

2

ÿ

iPrrNss

ÿ

i‰jPrrNss

1

}ri ´ rj}

´
ÿ

iPrrNnucss

1

2Mi
∆Ri `

1

2

ÿ

iPrrNnucss

ÿ

i‰jPrrNnucss

ZiZj
}Ri ´ Rj}

(9)

where Mi is the nuclear mass relative to the electronic mass, and Zi are the atomic
numbers found on the periodic table. A common simplification is the Born-Oppenheimer
approximation, which assumes that nuclei move much more slowly than electrons, meaning
that the kinetic potential energy coming exclusively from nuclei simply enter as a constant.
This reduces the problem to the electronic Schrödinger equation:

HpRqΨprq “ EΨprq (10)

where

HpRq “ ´
ÿ

iPrrNss

1

2
∆ri ´

ÿ

iPrrNss

ÿ

jPrrNnucss

Zj
}ri ´ Rj}

`
1

2

ÿ

iPrrNss

ÿ

i‰jPrrNss

1

}ri ´ rj}
. (11)

Subject of this topic course will be to solve this innocent looking eigenvalue problem.
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2 The hydrogen atom

For the hydrogen atom, the (stationary) Schrödinger equation takes the simple form

ˆ

´
1

2
∆ ´

1

}R ´ r}

˙

Ψprq “ EΨprq, (12)

where R P R3 denotes the position of the hydrogen nucleus. Without loss of general-
ity, we can define our coordinate system such that the nucleus defines the coordinate origin
simplifying the equation to

ˆ

´
1

2
∆ ´

1

}r}

˙

Ψprq “ EΨprq. (13)

We note that this is a spherically symmetric problem. This can be seen as follows: Consider
the rotation matrix R, then

r ÞÑ Rr “ r1 (14)

describes a rotation of the frame. Since R is unitary and the 2-norm is unitarily invariant,
we have

}r1} “ }Rr} “ }r}. (15)

Moreover, in the rotated frame the partial derivative is given by

Bx1
i

“
ÿ

j

Ri,jBxj ñ B2
x1
i

“
ÿ

k,j

Ri,kRi,jBxjBxk . (16)

Then

∆1f “
ÿ

i

ÿ

k,j

Ri,kRi,jBxjBxkf “
ÿ

k,j

˜

ÿ

i

Ri,kRi,j

¸

BxjBxkf “
ÿ

k

B2
xk
f “ ∆f. (17)

This suggests that we investigate this problem in spherical coordinates. Recall the spher-
ical coordinate transformation

s : r0, πs ˆ r0, 2πq ˆ Rě0 Ñ R3 ;

»

–

θ
ϕ
r

fi

fl ÞÑ

»

–

r sinpθq cospϕq

r sinpθq sinpϕq

r cospθq

fi

fl “

»

–

x
y
z

fi

fl (18)

and

s´1 : R3 Ñ r0, πs ˆ r0, 2πq ˆ Rě0 ;

»

–

x
y
z

fi

fl ÞÑ

»

–

tan´1py{xq

cos´1pz{
a

x2 ` y2 ` z2q
a

x2 ` y2 ` z2

fi

fl “

»

–

ϕ
θ
r

fi

fl (19)

The Laplacian in spherical coordinates is given by

∆ “
1

r2
B

Br

ˆ

r2
B

Br

˙

`
1

r2 sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

`
1

r2 sin2 θ

B2

Bϕ2

“:
1

r2
B

Br

ˆ

r2
B

Br

˙

´
1

r2
L2

(20)
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where we defined

L2 “ ´
1

sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

´
1

sin2 θ

B2

Bϕ2
. (21)

The separation of the radial and angular part in Eq. (20) suggests to use the separation
of variables ansatz, i.e.,

Ψpr, θ, ϕq “ RprqY pθ, ϕq. (22)

Inserting this ansatz into the Schrödinger equation (12), this yields

ˆ

´
1

2

1

r2
B

Br

ˆ

r2
B

Br

˙

`
1

2

1

r2
L2 ´

1

|r|

˙

RprqY pθ, ϕq “ ERprqY pθ, ϕq

ô

ˆ

´
1

2

1

r2
B

Br

ˆ

r2
B

Br

˙

´
1

|r|
´ E

˙

Rprq `
Rprq

2r2
L2Y pθ, ϕq

Y pθ, ϕq
“ 0

(23)

We see that solving this equation is subject to characterizing the spectrum of L2.

2.1 Spectrum of L2

We seek to solve the eigenvalue problem

L2Y pθ, ϕq “ kY pθ, ϕq. (24)

Given the structure of the operator L2, see Eq. (21), we again propose the separation of
variables ansatz

Y pθ, ϕq “ ΘpθqΦpϕq, (25)

which yields

ˆ

´
1

sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

´
1

sin2 θ

B2

Bϕ2

˙

ΘpθqΦpϕq “ kΘpθqΦpϕq

ô
sin2 θ

Θpθq

ˆ

´
1

sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

´ k

˙

Θpθq ´
1

Φpϕq

B2

Bϕ2
Φpϕq “ 0

(26)

We first separate Φpϕq which yields

$

’

&

’

%

´
B2

Bϕ2
Φpϕq “ m2Φpϕq

Φp0q “ Φp2πq

(27)

with separation constant m2, and periodic boundary condition because of the spherical
symmetry of the problem. The solution to Eq. (27) is given by

Φpϕq “ Aeimϕ, (28)

with m P Z to fulfill the azimuthal periodic boundary condition.

For Θpθq we then obtain

7



ˆ

´
1

sin θ

B

Bθ

ˆ

sin θ
B

Bθ

˙

`
m2

sin2 θ

˙

Θpθq “ kΘpθq (29)

Performing the coordinate transformation

ζ :“ cospθq and ξpcospθqq :“ Θpθq (30)

yields

d

dζ

ˆ

p1 ´ ζq2
dξ

dζ

˙

`

ˆ

k ´
m2

1 ´ ζ2

˙

ξ “ 0 (31)

with |ξp1q|, |ξp´1q| ă 8. This differential equation is a (well-)known differential equation,
namely, the generalized Legendre differential equation [?]. Recall the conventional Legendre
equation, i.e.,

p1 ´ x2q
d2y

dx2
´ 2x

dy

dx
` ℓpℓ` 1qy “ 0, (32)

where ℓ is the degree. This equation describes solutions to Laplace’s equation for az-
imuthally symmetric boundary conditions, i.e., when the solution has no dependence on the
azimuthal angle ϕ. However, to account for non-zero azimuthal dependence, particularly in
gravitational and electromagnetic potentials, the equation was extended to the generalized
Legendre differential equation, i.e.,

p1 ´ x2q
d2y

dx2
´ 2x

dy

dx
`

„

ℓpℓ` 1q ´
m2

1 ´ x2

ȷ

y “ 0, (33)

introducing the order m, which corresponds to the projection of angular momentum along
the z-axis. The solutions to this equation are the associated Legendre functions Pmℓ pxq, which
are derived from the Legendre polynomials Pℓpxq using the relation

Pmℓ pxq “ p1 ´ x2q
m
2
dm

dxm
Pℓpxq. (34)

These functions generalize Pℓpxq by incorporating azimuthal dependence and are crucial
in describing solutions to Laplace’s equation in spherical coordinates for problems with full
rotational symmetry. This formalism, developed to handle problems involving angular mo-
mentum and wave-like behavior, became essential in physics, geophysics, and engineering.

The Eq. (31) is a Legendre differential equation on r´1, 1s, which yields

k “ ℓpℓ` 1q, ℓ P Zě0 (35)

Each eigenvalue ℓpℓ`1q corresponds to ℓ`1 degenerate, orthogonal eigenfunctions, denoted

ξpζq “ Pmℓ pζq :“ p´1qmp1 ´ ζ2q
m
2
dm

dζm
Pℓpζq, m P t0, ..., ℓu (36)

where Pmℓ are the associated Legendre polynomials and

Pℓpζq “
p´1qℓ

2ℓℓ!

dℓ

dζℓ
p1 ´ ζ2qℓ (37)

are the Legendre polynomials [?]. We also define the negative associated Legendre polyno-
mials as
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P´m
ℓ pζq “ p´1qm

pℓ´mq!

pℓ`mq!
Pmℓ pζq (38)

Example 2.0.1. The first six Legendre polynomials are given by

P0pζq “ 1 P1pζq “ ζ P2pζq “ 1
2p3ζ2 ´ 1q

P3pζq “ 1
2p5ζ3 ´ 3ζq P4pζq “ 1

8p35ζ4 ´ 30ζ2 ` 3q P5pζq “ 1
8p63ζ5 ´ 70ζ3 ` 15ζq

The first few associated Legendre polynomials are give by

P 0
0 pxq “ 1

P´1
1 pxq “

p1´x2q1{2

2
P 0
1 pxq “ x P 1

1 pxq “ ´p1 ´ x2
q
1{2

P´2
2 pxq “

3p1´x2q

24
P´1
2 pxq “

3xp1´x2q1{2

6
P 0
2 pxq “

p3x2´1q

2
P 1
2 pxq “ ´3xp1 ´ x2

q
1{2 P 2

2 pxq “ 3p1 ´ x2
q

Changing the variables back to θ and Θpθq, this yields that

Θpθq “ Pmℓ pcospθqq (39)

Hence

Yℓ,mpθ, ϕq “ Cℓ,mP
m
ℓ pcospθqqeimϕ (40)

where Cℓ,m a normalization constant which is chosen such that

ż

r0,ϕsˆr0,2πq

Yℓ,mpθ, ϕqYℓ1,m1pθ, ϕq sin2pθq dθdϕ “ δl,l1δm,m1

ô Cℓ,m “ p´1qm

d

p2ℓ` 1q

4π

pℓ´mq!

pℓ`mq!

(41)

The functions Yℓ,mpθ, ϕq are the spherical harmonics fulfilling

L2Yℓ,m “ ℓpℓ` 1qYℓ,m (42)

where the eigenvalue had geometric multiplicity 2ℓ` 1.

Example 2.0.2. Let’s consider ℓ “ 1 and m “ 0, then

Y1,0pθ, ϕq “

c

3

4π
cospθq. (43)

We see that Y1,0 only depends on the polar angle θ and not on the azimuthal angle ϕ. A
possible way to visualize this function is via the map

fmℓ : pθ, ϕq ÞÑ Pmℓ pcospθqqeimϕ

»

–

sinpθq sinpϕq

sinpθq cospϕq

cospθq

fi

fl (44)

Using this procedure, we can visualize Y1,0 as shown in Fig. 4.
This procedure can similarly be applied to the first few spherical harmonics in Fig. 5.
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Figure 4: Construction of a visualization of Y1,0.

Figure 5: Graphical representation of the first few spherical harmonics, using the function
fmℓ in Eq. (44). Blue portions represent regions where the function is positive, and yellow
portions represent where it is negative. The rows correspond to ℓ “ 0 (s), ℓ “ 1 (p), ℓ “ 2
(d), ℓ “ 3 (f); the columns correspond to m P t´ℓ, ..., ℓu.

We shall now return to Eq. (23). Having found the spectrum of L2, Eq. (23) simplifies to

´
1

2

1

r2
B

Br

ˆ

r2
BRprq

Br

˙

´
1

r
Rprq `

Rprq

2r2
ℓpℓ` 1q “ ERprq, r ą 0, (45)

which is the radial equation. Note that

1

r2
B

Br

ˆ

r2
BRprq

Br

˙

“
1

r2

ˆ

2r
BRprq

Br
` r2

B2Rprq

Br2

˙

“

ˆ

2

r

BRprq

Br
`

B2Rprq

Br2

˙

“
1

r

B

Br

ˆ

Rprq ` r
BRprq

Br

˙

“
1

r

B2

Br2
rRprq

(46)

Substituting

uprq “ rRprq (47)
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yields

´
1

2

B2

Br2
rRprq ´Rprq `

Rprq

2r
ℓpℓ` 1q “ ErRprq

ô ´
1

2

B2

Br2
uprq ` Ṽ prquprq “ Euprq

(48)

where

Ṽ prq “
ℓpℓ` 1q

2r2
´

1

r
. (49)

We will now investigate the solution to Eq. (48) in two limiting cases. First, in the far
field. We note that

Ṽ prq
rÑ8
ÝÑ 0 (50)

which simplifies Eq. (48) to

´
1

2

B2

Br2
uprq “ Euprq. (51)

For E ą 0 the solution to Eq. (51) yields

uprq “ c1e
i
?
E2r ` c2e

´i
?
E2r, (52)

which cannot be square integrable, hence, any value E ą 0 cannot be an isolated eigen-
value. For E ď 0 the solution is given by

uprq “ c1e
?

|E|2r ` c2e
´

?
|E|2r. (53)

Since this solution must remain finite as r Ñ 8, c1 must be zero, hence,

uprq “ ce´
?

|E|2r. (54)

Second, in the near field. We note that

Ṽ prq
rÑ0
ÝÑ ´

ℓpℓ` 1q

2r2
and uprq

rÑ0
ÝÑ 0 (55)

which yields

´
1

2

B2

Br2
uprq ´

ℓpℓ` 1q

r2
uprq “ 0. (56)

Equation (56) has the solution

uprq “ c1r
ℓ`1 ` c2r

´ℓ (57)

but since r´ℓ Ñ 8 for r Ñ 0, c2 must be zero, hence,

uprq “ crℓ`1. (58)

Combining the near field and far field solution then yields the general solution

uprq “ Crℓ`1e´

b

|E|

2
rGprq (59)
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where

Gprq “ A0 `A1r `A2r
2 ` ... (60)

“stitches” the near field and far field solution together. Inserting this ansatz into Eq. (48)
yields the recursion

Ak “ ´2Ak´1
1 ´ pℓ` kq

?
´E2

pℓ` kqpℓ` k ` 1q ´ ℓpℓ` 1q
. (61)

For this series to terminate we require

0 “ 1 ´ pℓ` kq
?

´2E ô Ek,ℓ “ ´
1

2pℓ` kq2
(62)

12



3 Spin

We now want to transition to multi-electron systems. To that end, we need to address a
fundamental quantity that is – surprisingly – not explicitly incorporated into the electronic
Schrödinger equation, namely, the spin. Understanding the spin of an electron is a cornerstone
of quantum mechanics, yet it can be an abstract concept for learners. The Stern-Gerlach
experiment provides an intuitive and visualizable way to grasp the key ideas surrounding
spin. In the early 20th century, physicists were intrigued by the idea that electrons and other
particles possess intrinsic angular momentum beyond what classical physics could explain.
This intrinsic property, later named spin, was suspected but not clearly understood. The
Stern-Gerlach experiment, conducted in 1922 by Otto Stern and Walther Gerlach, aimed to
probe the nature of this intrinsic property by observing the deflection of particles in a magnetic
field.

The core idea of the experiment is deceptively simple. Here’s a breakdown of the essential
components, see Fig. 6:

‚ Source of Silver Atoms: The experiment initially used silver atoms – which contain a
single valence electron in an unpaired state (Ag has 47 electrons) – as a convenient proxy
for electrons.

‚ Collimated Beam: The silver atoms are heated and directed into a narrow beam.

‚ Non-Uniform Magnetic Field: The atoms pass through a region of non-uniform magnetic
field, which exerts a different force depending on the magnetic moment of each atom.

‚ Detection Screen: After passing through the magnetic field, the atoms strike a detection
screen, revealing their distribution.

Figure 6: Setup of the Stern-Gerlach experiment

Hot silver atoms emerge from an oven with an initial velocity directed along the y-axis.
These atoms then pass through a region containing an inhomogeneous magnetic field, created
by combining a uniform magnetic field oriented along the z-axis with a small perturbation that
introduces a gradient. As the silver atoms traverse this magnetic field, their final positions
along the z-axis are recorded on a detection screen placed to the right. Inside the oven,
individual silver atoms are produced carrying one unpaired valence electron that imparts a
net magnetic moment. This magnetic moment, referred to as the electron’s spin, is represented
by a vector µ P R3. The direction of this vector determines whether the atom’s trajectory
bends upwards or downwards within the magnetic field gradient.

13



Before the experiment was conducted, classical physics predicted that the magnetic mo-
ments of the atoms would orient randomly. As a result, a continuous smear of detection points
was expected on the screen, see Fig. 7.

However, quantum mechanics made a strikingly different prediction: due to the quantized
nature of spin, the beam should split into discrete parts, see Fig. 7.

(a) Classical prediction (b) Experiment

Figure 7: (a) The prediction of the result of the Stern–Gerlach experiment from classical
theory and (b) the experimental result.

By blocking one particle beam, we may use the Stern-Gerlach experiment to generate
filters, see Fig. 8. Embracing the Dirac notation, we denote the two states that pass through
a Stern-Gerlach apparatus with magnetic field in z-direction (SGz apparatus) by |`zy and
|´zy, respectively, see Fig. 8.

(a) SGz apparatus (b) SGz filter

Figure 8: (a) The Stern–Gerlach apparatus along the z-direction and (b) a filtering apparatus.

Note that the spatial orientation of the magnetic field does not have any fundamental effect
on the outcome. More precisely, we may rotate the apparatus in a way that the magnetic field
is oriented along the x-axis instead, and the outcome would be the same as above, however,
rotated around the y-axis. The resulting apparatus would be a Stern-Gerlach apparatus with
a magnetic field in x-direction (SGx apparatus) and the out-coming states would be |`xy and
|´xy, respectively.

Having the ability to combine different filters may allow us to perform a number of experi-
ments. First, we would combine two SGz apparatuses – or equivalently two SGx apparatuses.
Once a spin is filtered out, we do not observe a beam split if we filter twice or n times in
fact, see Fig. 9. On the other hand, filtering one spin out of the beam does not affect the
other spin, i.e., once an x-spin of filtered out, we still observe a beam split when transitioning
through a SZz apparatus.

14



(a) multiple SGz apparatuses (b) SGz filter

Figure 9: (a) The Stern–Gerlach apparatus along the z-direction and (b) a filtering apparatus.

An interesting observation happens when concatenating three SG filters, SZz–SZx–SZz.
Intuitively, the first filter would filter out a spin component in z-direction, the second filter
would filter out a spin component in x-direction, and we should no observe a beam split when
the beam transitions the third SZ filter. However, the experiment shows a different outcome,
see Fig. 10.

Figure 10: Sequence of three SG filters SZz–SZx–SZz.

The solution to this mysterious outcome can be obtained using only 2ˆ2 matrices and
will lead to the Heisenberg uncertainty principle. The theory of a single spin-12 particle can
described using a two-dimensional vector space H » C2 (isometric isomorphic) called the state
vector space. The states |˘zy form a basis of H, i.e., for any |ψy P H there exist ci1, c2 P C,
s.t.

|ψy “ c1|`zy ` c2|´zy. (63)

In particular, |˘xy are also states in H and can be extended using |˘zy. Moreover, H is a
Hilbert space, and |˘zy are orthonormal w.r.t. the inner product structure. In Dirac notation,
this means

x`z|`zy “ x´z|´zy “ 1 and x`z|´zy “ 0. (64)

Now, since the orientation of the Stern-Gerlach experiment is somewhat arbitrary, we
may change |˘zy to |˘xy in the above discussion. This in turn means that |˘xy are linearly
independent and therewith form a basis of H.

In quantum mechanics, a measurement corresponds to a linear operator that is self-adjoint
on H, and the possible outcomes correspond to the operator’s spectrum. The Stern-Gerlach
apparatus SGz corresponds to a measurement that measures the spin in z-direction. According
to the above postulate, this means that it corresponds to a linear and self-adjoint operator
on H, we shall denote it Sz, and we know the eigenstates of Sz are |˘zy. Similarly, we may
define Sx and Sy together with their spectra |˘xy and |˘yy, respectively. Since |˘xy P H
and |˘yy P H we may wonder about their expansion using the basis |˘zy. The Stern-Gerlach
experiment provides some insight into this expansion. We first note that when |`xy passes
through SGz the outcome is |˘xy with equal probability, i.e., the outcome suggests a bimodal
symmetric distribution. Sine we moreover have a phase that can be introduced, we find
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|`xy “
1

?
2

`

|`zy ` eiα|´zy
˘

(65)

and we find

|´xy “
1

?
2

`

|`zy ´ eiα|´zy
˘

(66)

Similarly we find

|`yy “
1

?
2

´

|`zy ` eiβ|´zy

¯

(67)

and

|´yy “
1

?
2

´

|`zy ´ eiβ|´zy

¯

(68)

In order to relate α and β we consider passing |˘xy through SGy; which yields a bimodal
distribution! Hence

|x˘y|˘xy|2 “
1

2
(69)

Since

x˘y|˘xy “
1

2

´

x`z| ˘ e´iβx´z|

¯

`

|`zy ˘ eiα|´zy
˘

“
1

2

´

x`z|`zy ˘ e´iβx´z|`zy ˘ eiαx`z|´zy ` e´ipβ´αqx´z|´zy

¯

“
1

2

´

1 ` e´ipβ´αq
¯

(70)

this yields

1

2
“ |x˘y|˘xy|2 “

1

2
p1 ` cospβ ´ αqq (71)

and therewith

α ´ β “ ˘
π

2
` 2πn, n P Z. (72)

We introduce the convention that α “ 0 and β “ π{2 which yields that

|˘xy “
1

?
2

p|`zy ˘ |´zyq and |˘yy “
1

?
2

p|`zy ˘ i|´zyq (73)

Since H » C2 we may perform the identification

|`zy “

„

1
0

ȷ

and |´zy “

„

0
1

ȷ

(74)

which yields

|`xy “
1

?
2

„

1
1

ȷ

and |´xy “
1

?
2

„

1
´1

ȷ

(75)

and
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|`yy “
1

?
2

„

1
i

ȷ

and |´yy “
1

?
2

„

1
´i

ȷ

(76)

This choice of functions allows us to formulate Sx, Sz, and Sz in matrix form. To that
end, we use the spectral theorem which yields

Sz “
1

2
p|`zyx`z| ´ |´zyx´z|q “

1

2

„

1 0
0 ´1

ȷ

(77)

as |˘zy are eigenvectors corresponding to eigenvalues ˘1
2 . The choice of these eigenvalues

Similarly we find

Sx “
1

2
p|`xyx`x| ´ |´xyx´x|q “

1

2

„

0 1
1 0

ȷ

Sy “
1

2
p|`yyx`y| ´ |´yyx´y|q “

1

2

„

0 ´i
i 0

ȷ (78)

Following the convention that S “ pSx, Sy, Szq “ 1
2pσx, σy, σzq we define the Pauli matrices

as

σx “

„

0 1
1 0

ȷ

, σy “

„

0 ´i
i 0

ȷ

, σz “

„

1 0
0 ´1

ȷ

(79)

One immediate observation is that linear operators for different observables do not neces-
sarily commute, e.g.,

SxSz “
1

4

„

0 1
1 0

ȷ „

1 0
0 ´1

ȷ

“
1

4

„

0 ´1
1 0

ȷ

SzSx “
1

4

„

1 0
0 ´1

ȷ „

0 1
1 0

ȷ

“
1

4

„

0 1
´1 0

ȷ (80)

which yields

rSz, Sxs “ SzSx ´ SxSz “
1

2

„

0 1
´1 0

ȷ

“ iSy (81)

This means that Sx and Sz are not simultaneously diagonalizable and we refer to them as
incompatible in a quantum mechanical context. Similarly, we find that

rSx, Sys “ iSz and rSy, Szs “ iSx (82)

Hence, Sx, Sy and Sz are mutually incompatible. On the other hand

S2 “ S2
x ` S2

y ` S2
z (83)

is compatible with all spin operators along any individual direction.
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Compatibility has an important physical consequence. Recall that the quantum mechanics
postulation that the final state from any measurement leads to an eigenstate of the operator
corresponding to a physical observable. Then if two operators can be simultaneously diago-
nalized using the same set of eigenstates, it means that one can simultaneously measure the
corresponding quantities, e.g., the spin magnitude S2 and the individual spin operators. The
compatibility condition is sufficient and necessary. In other words, if the two operators are
incompatible, then one cannot always simultaneously measure the values of the two physical
observables. This is the core concept behind the uncertainty principle, which can be formu-
lated in terms of an inequality for the fluctuation of the measurements for two operators A
and B. For a given operator A and quantum state Ψ, we define an operator

∆A “ A´ xAyI :“ A´ xΨ|A|ΨyI (84)

Thus, the expectation value of ∆A is given by

x∆Ay “ xAy ´ xAy “ 0 (85)

and its variance is

x∆A2y “ xpA´ xΨ|A|ΨyIq2y “ xA2y ´ xAy2 (86)

Now, if two operators A and B are compatible, and Ψ is one of their common eigenvectors,
then

x∆A2y “ x∆B2y “ 0. (87)

This means that there is no uncertainty in measuring the values of both A and B simul-
taneously. Since A is hermitian, ∆A is also hermitian; together with the Cauchy–Schwarz
inequality yields

|x∆A∆By|2 “ |pxψ|∆Aqp∆B|ψyq|2

ď xψ|∆Ap∆Aq˚|ψyxψ|p∆Bq˚∆B|ψy

“ x∆A2yx∆B2y

(88)

and note that

∆A∆B “
1

2
p∆A∆B ` ∆B∆Aq `

1

2
p∆A∆B ´ ∆B∆Aq “

1

2
t∆A,∆Bu `

1

2
r∆A,∆Bs (89)

Since t∆A,∆Bu is hermitian, xt∆A,∆Buy P R. Similarly, we note that ir∆A,∆Bs is
hermitian, hence, xr∆A,∆Bsy is purely imaginary. This yields

|x∆A∆By|2 “
1

4
|xt∆A,∆Buy ` xr∆A,∆Bsy|2

ě
1

4
|xr∆A,∆Bsy|2 “

1

4
|xrA,Bsy|2

(90)

where we used that

18



r∆A,∆Bs “ rA´ xAyI,B ´ xByIs

“ pA´ xAyIqpB ´ xByIq ´ pB ´ xByIqpA´ xAyIq

“ AB ´ xByA´ xAyB ` xAyxBy ´BA` xAyB ` xByA´ xAyxBy

“ AB ´BA

“ rA,Bs.

(91)

Hence

x∆A2yx∆B2y ě
1

4
|xrA,Bsy|2 (92)

which is known as the uncertainty principle. It states that there is a lower bound for
the product of the uncertainty of two operators x∆A2y and x∆B2y given by the expectation
value of the commutator. Due to the uncertainty principle, one cannot obtain simultaneously
precise measurements of, e.g., Sx and Sz.

3.1 Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle is defined as the uncertainty of the position operator
and momentum operator. First introduced in 1927 by German physicist Werner Heisenberg,
the formal inequality relating the standard deviation of position and the standard deviation
of momentum was derived by Earle Hesse Kennard later that year and by Hermann Weyl in
1928.

The explanation for “why” the position and momentum operators are of the presented
form requires more physical background and motivation which we will not provide here.

In real space the position operator is defined as

x|ψy “ |xψy ô pxψqpxq “ xψpxq (93)

for any |ψy P H. Note that for an eigenstate of the position operator, i.e.,

x|ψy “ x0|ψy, (94)

this means that Ψpxq “ 0 if x ‰ x0. This however contradicts that |ψy is normalizable.
In fact the position operator does not have an eigenstate that is square integrable. Instead
the eigen decomposition of the position operator is given by the Dirac δ-distribution loosely
defined as

δpx´ x0q “

#

8, if x “ x0

0, else
(95)

with

ż

δpx´ x0qdx “ 1. (96)

Note that to fully grasp this, we require the theory of distributions. The momentum
operator determines the momentum of a quantum mechanical particle and is defined as

p “ ´i
d

dx
(97)
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hence, when applied to a wavefunction ψpxqψpxq this yields

pψpxq “ ´iψ1pxq. (98)

We may now compute the commutator of the position operator and the momentum oper-
ator

rx, psψpxq “ pxp´ pxqψpxq “ xp´iψ1pxqq ` iψpxq ` ixψ1pxq “ iψpxq (99)

hence
rx, ps “ i (100)

which is known as the canonical commutation relation. In particular, position and momentum
cannot be simultaneously determined. A more quantitative version of this statement is given
by the uncertainty principle

a

x∆x2y
a

x∆p2y “
1

2
(101)
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3.2 Quantum numbers

Recall from the hydrogen atom computation that we found the states ψn,ℓ,m, where n ě 1,
0 ď ℓ ď n ´ 1, and ´ℓ ď mℓ ď ℓ. We have now learned that an electron also has a spin
value ms “ t˘1

2u. This means that every energetic state of the electron in the hydrogen is
described by these four numbers:

principal quantum number n ě 1
azimuthal quantum number 0 ď ℓ ď n´ 1
magnetic quantum number ´ℓ ď mℓ ď ℓ

spin quantum number ms “ t˘1
2u

In fact, this characterization of electronic states in an atom generalizes to multi-electron
systems atoms. However, there is a catch:

Pauli-exclusion principle [?]:
“In a poly-electron atom it is impossible for any two electrons to have the same two values
of all four of their quantum numbers, which are: n, the principal quantum number; ℓ, the
azimuthal quantum number; mℓ, the magnetic quantum number; and ms, the spin quantum
number.”

Consequently, in multi-electron atoms the electrons occupy different electronic states. The
“filling” of electronic states follows the Aufbau principle see Fig. 11.

(a) (b)

Figure 11: (a) Visualization of the Aufbau principle. and (b) the energies of the different
states.

The Aufbau principle relates to the first three quantum numbers, which are sufficient for
the hydrogen atom. In multi-electron atoms the spin quantum number needs to be carefully
considered. Here Hund’s rule applies, which says that the orbitals of the subshell are each
occupied singly with electrons of parallel spin before double occupation occurs.

21



Example 3.0.1. Consider the molecule chlorine which has 17 electrons, following the Aufbau
principle and Hund’s rule we find the following configuration, see Table. 1.

s p s p
n = 1 tψ1,0,0, 1

2
, ψ1,0,0,´ 1

2
u ÒÓ

n = 2 tψ2,0,0, 1
2
, ψ2,0,0,´ 1

2
u tψ2,1,´1, 1

2
, ψ2,1,´1,´ 1

2
ψ2,1,0, 1

2
, ψ2,1,0,´ 1

2
ψ2,1,1, 1

2
, ψ2,1,1,´ 1

2
u ÒÓ ÒÓ ÒÓ ÒÓ

n = 3 tψ3,0,0, 1
2
, ψ3,0,0,´ 1

2
u tψ3,1,´1, 1

2
, ψ3,1,´1,´ 1

2
ψ3,1,0, 1

2
, ψ3,1,0,´ 1

2
ψ3,1,1, 1

2
u ÒÓ ÒÓ ÒÓ Ò

Table 1: Orbital occupation for chlorine,

Therefore the electronic configuration is

1s22s22p63s23p5 “ rNes3s23p5 (102)

Remark 3.0.1. The electronic configuration of an atom can be determined quicker by looking
at the periodic table, see Fig. 12.

Figure 12: Orbital blocks in periodic table

We then “walk from left to right and top to bottom” to determine the electronic configu-
ration.
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4 Combining two spin-12 particles

When we investigated a single spin particle, we could use the |˘zy as a basis. Now what is
the correct basis for two spin-12 particles? A natural extension to the |˘zy basis is the tensor
product basis, i.e.,

|`zy b |`zy “ |`z,`zy |`zy b |´zy “ |`z,´zy

|´zy b |`zy “ |´z,`zy |´zy b |´zy “ |´z,´zy
(103)

in which the first element describes the state of particle one and the second element describes
the state of particle two. More formally, we may consider two Hilbert spaces HA and HB of
dimension NA and NB describing the individual particles, respectively, and denote their bases
t|φAi yu

NA
i“1 and t|φBi yu

NB
i“1. The tensor product space is then defined as

HA b HB “ Span
␣

|φAi , φ
B
j y | i P rrNAss, j P rrNBss

(

, (104)

where
Here, t|φAi , φ

B
j yu form a new basis. Recall the tensor product of vectors

|`zy b |´zy “

„

1
0

ȷ

b

„

0
1

ȷ

“

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

(105)

Since HA and HB are Hilbert spaces, their tensor product space inherits an inner product
structure

xφAi , φ
B
j |φAi1 , φ

B
j1 yAbB “ xφAi |φAi1 yAxφBj |φBj1 yB (106)

Therefore, if t|φAi yu
NA
i“1 and t|φBi yu

NB
i“1 are orthonormal, the tensor product basis inhertis

the orthonormality, i.e.,

xφAi , φ
B
j |φAi1 , φ

B
j1 y “ xφAi |φAi1 yxφBj |φBj1 y “ δi,i1δj,j1 (107)

Moreover, HA b HB is a Hilbert space itself of dimension NA ˆ NB. Similarly, we may
extend operators to tensor product spaces. Let A and B be two operators defined on HA and
HB, respectively. Then

pAbBq|φAi1 , φ
B
j1 y :“ |AφAi1 , Bφ

B
j1 y. (108)

Returning to our example of two spin-12 particles, we can then define the operators

Sp1q
z “ Sz b I and Sp2q

z “ I b Sz (109)

and the total spin operator in z-direction

Stot
z “ Sp1q

z ` Sp2q
z (110)

Similarly, we can define Stot
x and Stot

y , as the corresponding spin magnitude operator

pStotq2 “ pStot
x q2 ` pStot

y q2 ` pStot
z q2 (111)

We observe that
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Stot
z |`z,`zy “ Sz b I|`z,`zy ` I b Sz|`z,`zy “

1

2
|`z,`zy `

1

2
|`z,`zy “ |`z,`zy

Stot
z |´z,´zy “ Sz b I|´z,´zy ` I b Sz|´z,´zy “ ´

1

2
|´z,´zy ´

1

2
|´z,´zy “ ´|´z,´zy

Stot
z |`z,´zy “ Sz b I|`z,´zy ` I b Sz|`z,´zy “

1

2
|`z,´zy ´

1

2
|`z,´zy “ |0y

Stot
z |´z,`zy “ Sz b I|´z,`zy ` I b Sz|´z,`zy “ ´

1

2
|´z,`zy `

1

2
|´z,`zy “ |0y

(112)
Hence all basis vectors of the tensor product basis are eigenstates of Stot

z . We now want
to investigate if Stot

z and the corresponding total spin square operator commute. To that end,
we first note that

`

Stot
z

˘2
“ pSz b Iq

2
` pSz b Iq pI b Szq ` pI b Szq pSz b Iq ` pI b Szq

2

“
1

2
I b I ` 2Sz b Sz

(113)

which yields

pStotq2 “
3

2
I b I ` 2Sx b Sx ` 2Sy b Sy ` 2Sz b Sz (114)

and therefore

rpStotq2, Stot
z s “

3

2
rI b I, Stot

z s ` 2rSx b Sx, S
tot
z s ` 2rSy b Sy, S

tot
z s ` 2rSz b Sz, S

tot
z s

“ 2rSx b Sx, S
tot
z s ` 2rSy b Sy, S

tot
z s ` 2rSz b Sz, S

tot
z s

(115)

We then note that

rSα b Sα, S
tot
z s “ rSα b Sα, S

p1q
z s ` rSα b Sα, S

p2q
z s

“ rSα, Szs b Sα ` Sα b rSα, Szs
(116)

Since the spin operators for single particles are cyclic we find

rSx b Sx, S
tot
z s “ ´iSy b Sx ´ iSx b Sy

rSy b Sy, S
tot
z s “ iSx b Sy ` iSy b Sx

rSz b Sz, S
tot
z s “ 0

(117)

which yields that

rpStotq2, Stot
z s “ 0. (118)

Therefore pStotq2 and Stot
z can be simultaneously diagonialized. More specifically,

pStotq2|`z,`zy “ 2|`z,`zy and pStotq2|´z,´zy “ 2|´z,´zy (119)

On the other hand, we note that
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pStotq2|`z,´zy “
3

2
I b I|`z,´zy ` 2Sx b Sx|`z,´zy

` 2Sy b Sy|`z,´zy ` 2Sz b Sz|`z,´zy

“
3

2
|`z,´zy `

1

2
|´z,`zy `

1

2
|´z,`zy ´

1

2
|`z,´zy

“ |`z,´zy ` |´z,`zy

(120)

and similar

pStotq2|´z,`zy “ |´z,`zy ` |`z,´zy (121)

Hence, |˘z,¯zy are not eigenstates of pStotq2. Instead,

pStotq2
ˆ

1
?
2

|`z,´zy `
1

?
2

|´z,`zy

˙

“
1

?
2

pStotq2|`z,´zy `
1

?
2

pStotq2|´z,`zy

“
1

?
2

p|`z,´zy ` |´z,`zyq `
1

?
2

p|´z,`zy ` |`z,´zyq

“ 2

ˆ

1
?
2

|`z,´zy `
1

?
2

|´z,`zy

˙

(122)

and similar

pStotq2
ˆ

1
?
2

|`z,´zy ´
1

?
2

|´z,`zy

˙

“ 0. (123)

Thus, the operator pStotq2 can be used to distinguish the 0-eigenspace of Stot
z . So we can

summarize the eigenstates as

State Type pStotq2 Stot
z

1?
2

p|`z,´zy ´ |´z,`zyq singlet 0 0

|`z,`zy 1
1?
2

p|`z,´zy ` |´z,`zyq triplet 2 0

|´z,´zy -1
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4.1 The hydrogen molecule ion H`
2

We now consider the H`
2 molecule consisting of two hydrogen atoms, but with one electron

removed. The Hamiltonian then reads

H “
1

2
∆r ´

1

}r}
´

1

}r ´ R}
. (124)

A crude approximation to the solution would be a linear combination of two 1s orbitals
centered at 0 and R respectively, i.e.,

ψprq “ c1ψ1,0,0prq ` c2ψ1,0,0pr ´ Rq. (125)

In this framework, we assume the Galerkin space

H “ Spantψ1,0,0p¨q, ψ1,0,0p¨ ´ Rqu (126)

which yields the matrix eigenvalue problem

„

ε ´t
´t ε

ȷ

c “ E

„

1 s
s 1

ȷ

c (127)

where

ε “

ż

R3

ψ1,0,0prqpHψ1,0,0qprqdr

´t “

ż

R3

ψ1,0,0prqpHψ1,0,0qpr ´ Rqdr

s “

ż

R3

ψ1,0,0prqψ1,0,0pr ´ Rqdr

(128)

Given that s, t ą 0, the state eigenvalue and eigenfunctions are

Eg “
ε´ t

1 ` s
, cg “

1
a

2p1 ` sq

„

1
1

ȷ

(129)

and

Ee “
ε` t

1 ´ s
, cg “

1
a

2p1 ´ sq

„

1
´1

ȷ

(130)
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5 Slater Determinant
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6 Hartree–Fock Theory

min
|ψy P HN

xψ|H|ψy

xψ|ψy
ď min

|ψy P SN

xψ|H|ψy

xψ|ψy
(131)

where

SN “

#

ψ P HN | Dpϕ1, ..., ϕN q P CN ; ψ “
1

?
N !

N
ľ

i“1

ϕi

+

,

is the set of Slater determinants and the set of N -frames

CN “
␣

pϕ1, ..., ϕN q | ϕi P H1 and xϕi, ϕjyL2 “ δi,j for 1 ď j, i ď N
(

is the Stiefel manifold. Note that the functional in Eq. (131) over SN is invariant with
respect to unitary transformations. To remedy this non-uniqueness we introduce the Grass-
mannian as suitable quotient space of CN , i.e.,

GN “ CN
ˇ

ˇ

„
, (132)

where the equivalence classes are given by

rΦs„ “

!

Φ̃ P CN | DU P UpNq s.t. Φ “ U Φ̃
)

. (133)

In other words, we identify all orthonormal N -frames spanning the same subspace. This yields
the following minimization problem

EHF “ inf
ΨPSN

J pΨq “ inf
ΦPGN

εpΦq, (134)

6.1 One-body part

xΨ|h|Ψy “ ... “

N
ÿ

i“1

ż

R3ˆt˘ 1
2u

1

2
|∇rϕipxq|2 ` Vextprq|ϕipxq|2dx (135)

6.2 Two-body part

Recall that the two-body interaction term is given by

HI :“
ÿ

iăj

gpi, jq :“
ÿ

iăj

1

}ri ´ rj}
(136)

Again, let Ψ “ Φrj1, ..., jN s be a Slater determinant. Then

xΨ|HI |Ψy “
ÿ

iăj

C

Ψ

ˇ

ˇ

ˇ

ˇ

ˇ

1

}ri ´ rj}

ˇ

ˇ

ˇ

ˇ

ˇ

Ψ

G

“

ˆ

N

2

˙

C

Ψ

ˇ

ˇ

ˇ

ˇ

ˇ

1

}r1 ´ r2}

ˇ

ˇ

ˇ

ˇ

ˇ

Ψ

G
(137)

We note that
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C

Ψ

ˇ

ˇ

ˇ

ˇ

ˇ

1

}r1 ´ r2}

ˇ

ˇ

ˇ

ˇ

ˇ

Ψ

G

“

ż

pR3ˆt˘ 1
2uq

bN
Ψ˚px1, ...,xN q

1

}r1 ´ r2}
Ψpx1, ...,xN qdx1...dxN

“
1

N !

ÿ

π,π1PSN

sgnpπqsgnpπ1q

ż

pR3ˆt˘ 1
2uq

b2
ϕ˚
πp1qpx1qϕ˚

πp2qpx2q
1

}r1 ´ r2}
ϕπ1p1qpx1qϕπ1p2qpx2q

ˆ

N
ź

i“3

ż

R3ˆt˘ 1
2u
ϕ˚
πpiqpxqϕπ1piqpxqdx

Note that

N
ź

i“3

ż

R3ˆt˘ 1
2u
ϕ˚
πpiqpxqϕπ1piqpxqdx “

N
ź

i“3

δπpiq,π1piq (138)

which implies that either

πp1q “ π1p1q “ i1 and πp2q “ π1p2q “ i2 (139)

or

πp1q “ π1p2q “ i1 and πp2q “ π1p1q “ i2 (140)

where i1, i2 P t1, ..., Nu. In case of Eq. (139) we have that

sgnpπq “ sgnpπ1q ñ sgnpπqsgnpπ1q “ 1

Whereas in case of Eq. (140) we have that

sgnpπq “ ´sgnpπ1q ñ sgnpπqsgnpπ1q “ ´1

Thus

C

Ψ

ˇ

ˇ

ˇ

ˇ

ˇ

1

}r1 ´ r2}

ˇ

ˇ

ˇ

ˇ

ˇ

Ψ

G

“
pN ´ 2q!

N !

N
ÿ

i“1

N
ÿ

i‰j“1

˜

ż

pR3ˆt˘ 1
2uq

b2
ϕ˚
i px1qϕ˚

j px2q
1

}r1 ´ r2}
ϕipx1qϕjpx2qdx1dx2

´

ż

pR3ˆt˘ 1
2uq

b2
ϕ˚
i px1qϕ˚

j px2q
1

}r1 ´ r2}
ϕjpx1qϕipx2qdx1dx2

¸

:“
1

NpN ´ 1q

N
ÿ

i“1

N
ÿ

i‰j“1

xij||ijy ´ xij||jiy

Hence

xΨ|HI |Ψy “
1

2

N
ÿ

i,j“1

xij||ijy ´ xij||jiy (141)

Putting it all together
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EHFptϕiu
N
i“1q “

N
ÿ

i“1

ż

R3ˆt˘ 1
2u

1

2
|∇rϕipxq|2 ` Vextprq|ϕipxq|2dx

`
1

2

ÿ

i,j

ż

pR3ˆt˘ 1
2uq

b2

|ϕipxq|2|ϕjpx
1q|2

}r ´ r1}
dxdx1

´
1

2

ÿ

i,j

ż

pR3ˆt˘ 1
2uq

b2

ϕ˚
i pxqϕ˚

j px1qϕjpxqϕipx
1q

}r ´ r1}
dxdx1

“

N
ÿ

i“1

xi||iy `
1

2

ÿ

i,j

xij||ijy ´ xij||jiy

How do we optimize this energy function?
We assume a given set of spin-orbitals tχiu

K
i“1 where N ď K. Note that in this context, χi

may be inspired by atomic orbital functions are are not necessarily orthogonal, i.e.,

Si,j :“ xχi|χjy (142)

and S ‰ IK . We then make the ansatz

ϕi “

K
ÿ

j“1

Cj,iχj (143)

defining C P CKˆN . Applying this to the kinetic energy part we find

1

2

N
ÿ

i“1

ż

R3ˆt˘ 1
2u

p∇rϕipxqq˚∇rϕipxq dx

“
1

2

N
ÿ

i“1

K
ÿ

j,k“1

C˚
j,iCk,i

ż

R3ˆt˘ 1
2u

p∇rχjpxqq˚∇rχkpxq dx

“

N
ÿ

i“1

1

2

K
ÿ

j,k“1

C˚
j,iCk,i x∇χj ,∇χky

(144)

Overall, this yields

EHFpCq “

N
ÿ

i“1

1

2

K
ÿ

j,k“1

C˚
j,iCk,i x∇χj ,∇χky

´

N
ÿ

i“1

K
ÿ

j,k“1

C˚
j,iCk,i xχj , Vextχky

`
1

2

N
ÿ

i,j“1

K
ÿ

k,ℓ,m,n“1

C˚
k,iC

˚
ℓ,jCm,iCn,j xχkχℓ||χmχny

´
1

2

N
ÿ

i,j“1

K
ÿ

k,ℓ,m,n“1

C˚
k,iC

˚
ℓ,jCm,jCn,i xχkχℓ||χmχny
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Introducing the tensors

Tj,k “
1

2
x∇ϕj |∇ϕky

Vj,k “ xϕj |V |ϕky

h “ T ´ V

Vi,j,k,l “ xχiχj ||χkχly

we find
EHFpCq “ Tr

`

C:hC
˘

`
1

2

N
ÿ

i,j“1

K
ÿ

k,ℓ,m,n“1

C˚
k,iC

˚
ℓ,jCm,iCn,jVk,ℓ,m,n

´
1

2

N
ÿ

i,j“1

K
ÿ

k,ℓ,m,n“1

C˚
k,iC

˚
ℓ,jCm,jCn,iVk,ℓ,m,n

We define the one-particle reduced density matrix (1-RDM) D P CKˆK element-wise as

Di,j “ rCC:si,j “

N
ÿ

k“1

Ci,kC
˚
j,k. (145)

which yields

EHFpDq “ Tr phDq

`
1

2

K
ÿ

k,ℓ,m,n“1

Dm,kDn,ℓVk,ℓ,m,n

´
1

2

K
ÿ

k,ℓ,m,n“1

Dn,kDm,ℓVk,ℓ,m,n

“: Tr phDq `
1

2
Tr pJpDqDq ´

1

2
Tr pKpDqDq

(146)

where

JpDqk,m “

K
ÿ

ℓ,n“1

Dn,ℓVk,ℓ,m,n (147)

is the Hartree or Coulomb operator leading to

Tr pJpDqDq “

K
ÿ

k,m“1

JpDqk,mDm,k “

K
ÿ

k,ℓ,m,n“1

Dn,ℓVk,ℓ,m,nDm,k (148)

and

KpDqk,n “

K
ÿ

ℓ,m“1

Dm,ℓVk,ℓ,m,n (149)

is the Fock or exchange operator leading to

Tr pKpDqDq “

K
ÿ

k,n“1

KpDqk,nDn,k “

K
ÿ

k,ℓ,m,n“1

Dm,ℓVk,ℓ,m,nDn,k (150)
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Given the compact form of the energy functional, we will now take a closer look at C or
equivalently D. We first note that we have used that

δi,j “ xϕi|ϕjy “
ÿ

k,ℓ

C˚
k,ixχk|χℓyCℓ,j (151)

which yields the condition that

C:SC “ IN (152)

Hence we can write the Hartree–Fock method as a constraint minimization, namely,

min
CPCKˆN

EHFpCq

subject to C:SC “ IN
(153)

This yields the Lagrangian

LrC,Λs “ EHFpCq ´ TrrΛpI ´ C:SCqs (154)

We find that

0
p!q
“ ∇CLrC,Λs

“ 2hC `
1

2
4JpCC:qC ´

1

2
4KpCC:qC ` 2SCΛ

ô FpCqC :“ ph ` JpCC:q ´ KpCC:qqC “ SCΛ

(155)

where F pCq is the Fock matrix constructed from the C P CKˆN . Diagonalizing Λ, i.e.,

Λ “ UEU˚ (156)

yields the non-linear generalized eigenvalue problem (GEVP)

FpCUqCU “ SCUE
ô FpCqC “ SCE

(157)

This is known as the Roothan Hall equations, and the self-consistent field (SCF) iteration
method solves this problem self-consistently, i.e.,

Cpkq Ñ FpCpkqq Ñ Cpk`1q (158)

until convergence is reached. Note that we here used a certain notational ambiguity,
namely, solving the GEVP yields a matrix C P CKˆK . These are all molecular orbitals.
Those corresponding the lowest N eigenvalues ε are called occupied molecular orbitals and
are used to generate the Fock matrix for the next iteration which is consistent with the Auf-
bau principle. The remaining orbitals are the virtual molecular orbitals.

Having the 1-RDM as the central object, we make the following observations:
First, we see that D is hermitian since

D: “ pCC:q: “ CC: “ D (159)
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Second, we note that

TrrSDs “ TrrC:SCs “ TrrIN s “ N (160)

Third, we find

DSD “ CC:SCC: “ CC: “ D (161)

min
DPCKˆK

EHFpDq

subject to D P D
(162)

where

D “ tD P CKˆK | DSD “ D, TrrSDs “ N, D: “ Du (163)

Note that 0 ă S, i.e., S is positive definite and when the orbitals tχuKi“1 are orthonormal-
ized, e.g.,

χ̃i “

K
ÿ

j“1

rS´ 1
2 si,jχj (164)

then

xχ̃i|χ̃jy “

K
ÿ

k,ℓ“1

rS´ 1
2 si,kxχk|χℓyrS´ 1

2 sj,ℓ “ rS´ 1
2SS´ 1

2 si,j “ δi,j , (165)

we have
D “ tD P CKˆK | D2 “ D,TrrDs “ N,D: “ Du (166)

This set is equivalent to the Grasssmann manifold. Therefore we may also directly min-
imize the energy functional EHFpDq over the Grassmann manifold. Note that this argument
may also be made for EHFpCq via C P CKˆN . For obvious reasons, methods that follow
this optimization procedures are called direct minimization approaches to the Hartree–Fock
problem.

6.3 Spin symmetries (Fokotume)

Up to this point, we assumed that tχuKi“1 Ď H1pR3 ˆ t˘1
2uq is a very general set of functions.

However, this approach is more general than it needs to be. Recall that the Hamiltonian does
not explicitly depend on the spin degree of freedom. In particular the ansatz

χipxq “ ξiprqmipsq (167)

where ξ are the spatial orbitals and m are the spinors, is justified. The different spin
symmetry approaches then corresponds to different ansätze in the LCAO formalism, namely,

Spin unrestricted HF

ϕi,s “

K{2
ÿ

p“1

C
psq

p,i ξi bms (168)

here C P CKˆN is block diagonal, with not necessarily equal blocks.
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Spin restricted HF

ϕi,s “

K{2
ÿ

p“1

Cp,iξi bms (169)

here C P CKˆN is block diagonal, with equal blocks.
Spin generalized HF

ϕi “

K{2
ÿ

p“1

2
ÿ

s“1

Cp,iξi bms (170)

here C P CKˆN is block diagonal, with not necessarily equal blocks.
Note that these symmetries have effect the optimization functional. In case of spin re-

stricted Hartree–Fock we find that the Fock matrix is given by

F pCq “ h ` JpCC:q ´
1

2
KpCC:q (171)

where C P Ck{2ˆN{2 is only one of the diagonal blocks, and the ERI using in the Coulomb
and exchange term are coming from K{2 spatial orbitals. The corresponding RHF energy is
then given by

ERHF “
1

2
TrrDph ` FpCqqs (172)

where D “ CC:.
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7 Second Quantization

7.1 The Fermionic Fock space

Starting point are the atomic spin orbitals tϕiu which are sufficiently smooth functions defined
on R3 ˆ t˘1{2u. The set of atomic orbitals is denoted B and spans the finite-dimensional
space h. In our case, |B| “ n " d. In physics and chemistry parlance, h is commonly referred
to as the single-particle Hilbert space.

The M -particle (Hilbert) space, denoted HpMq, is then the M -th exterior power of h
equipped with the natural orthonormal basis, denoted BpMq, coming from wedge-products of
elements of B (these are the Slater determinants). We define the fermionic Fock space as the
Grassmann algebra on h “ Hp1q:

F “

n
à

M“0

HpMq. (173)

All vector spaces defined above are real vector spaces. Recall that by Pauli’s exclusion prin-
ciple, atomic spin orbitals can either be occupied or unoccupied, hence, any element in F can
be expressed by means of an occupation vector, i.e., a K-tuple of zeros and ones.

Example 7.0.1. We may write an occupation vector using Dirac notation: Consider

|s1, ..., sny “
1

?
M !

ϕs11 ^ ϕs22 ^ ...^ ϕsnn (174)

where M “
ř

i si ď n and si P t0, 1u for all i “ 1, ..., n. A general element in F , is then given
as

|Ψy “
ÿ

s1,...,snPt0,1u

Ψps1, ..., snq|s1, ..., sny (175)

where Ψps1, ..., snq P C.

The central objects in the second quantization are the fermionic creation and annihilation
operators, i.e.,

a:
p : F Ñ F ; |s1, ..., sny ÞÑ p´1qσppqp1 ´ spq|s1, ...sp´1, 1 ´ sp, sp`1, ..., sny

ap : F Ñ F ; |s1, ..., sny ÞÑ p´1qσppqsp|s1, ...sp´1, 1 ´ sp, sp`1, ..., sny
(176)

where σppq “
řp´1
q“1 sq. As the name suggests, these operators create or annihilate a “particle”

in the pth atomic spin-orbital.

7.2 The Jordan-Wigner transformation

One particularly useful way of thinking of occupation vectors is by means of tensor products.
To that end, we denote

ˆ

1

0

˙

” unoccupied and

ˆ

0

1

˙

” occupied

Note that this is an arbitrary choice, but this is the convention used in the community. Then,
we may identify

|s1, ..., sny “

ˆ

1 ´ s1
s1

˙

b ...b

ˆ

1 ´ sn
sn

˙

. (177)
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Example 7.0.2. Let n “ 2, then

|01y “

ˆ

1

0

˙

b

ˆ

0

1

˙

“

¨

˚

˚

˝

0
1
0
0

˛

‹

‹

‚

(178)

This perspective is particularly useful since it allows us to derive a discretization of the
Hamiltonian in terms of exponentially large but extremely sparse matrices. We begin by
defining the matrix

a “

ˆ

0 1
0 0

˙

and note that
ˆ

1

0

˙

“ a

ˆ

0

1

˙

and

ˆ

0

1

˙

“ a:

ˆ

1

0

˙

In other words, a annihilates and a: creates a particle. Moreover, we define the matrix

σz “

ˆ

1 0
0 ´1

˙

which is also known as the Pauli-z matrix. Note that

p´1q

ˆ

0

1

˙

“ σz

ˆ

0

1

˙

and

ˆ

1

0

˙

“ σz

ˆ

1

0

˙

In other words, the Pauli-z matrix multiplies by the factor -1 if the orbital is occupied, and
by 1 if the state is unoccupied. We can therefore use the Pauli-z matrix to get the parity in
Eq. (176) correct.

Then, the fermionic creation and annihilation operators are sparse matrices of the form

a:
p “ σz b ...b σz

loooooomoooooon

p´1 times

b a: b I b ...b I
loooomoooon

n´p´1 times

and ap “ σz b ...b σz
loooooomoooooon

p´1 times

b ab I b ...b I
loooomoooon

n´p´1 times
(179)

where

I “

ˆ

1 0
0 1

˙

(180)

Example 7.0.3. Let n “ 3, then

a2 “ σz b ab I “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 ´1 0
0 0 0 0 0 0 0 ´1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

(181)

Clearly, one does not want to store the creation and annihilation matrices explicitly, as
they scale as Op2nq, yet their very structured sparsity pattern can be leveraged.

Before venturing further into the Hamiltonian description, we want to highlight the most
important property of the fermionic creation and annihilation matrices.
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Theorem 7.1. the fermionic creation and annihilation operators obey the canonical anti-
communication relation (CAR):

rap, aqs` “ ra:
p, a

:
qs` “ 0 and rap, a

:
qs` “ δp,q. (182)

Proof. Let p ă q. Then

apaq “ I b ...b I b aσz
loomoon

“´a

bσz b ...b σz b ab I b ...b I

“ ´I b ...b I b σza
loomoon

“a

bσz b ...b σz b ab I b ...b I

“ ´aqap

(183)

For p “ q we find a2 “ 0 tensored with identities. Similarly, we find that ra:
p, a

:
qs` “ 0.

For Slater determinants there holds

|s1, ..., sny “
ź

i“1n

pa:

i q
si |´y “ a:

k...a
:
1|´y

7.3 Hamiltonian in second quantization

Given the fermionic creation and annihilation operators, the Coulomb Hamiltonian can be
reformulated in second quantized form it reads

H “

n
ÿ

p,q“1

hp,qa
:
paq `

1

2

n
ÿ

p,q,r,s“1

vp,q,r,sa
:
pa

:
rasaq, (184)

where

hp,q “

ż

X
ϕ˚
ppx1q

˜

´
∆

2
´
ÿ

j

Zj
|r1 ´Rj |

¸

ϕqpx1qdx1 (185)

and

vp,q,r,s “

ż

XˆX

ϕ˚
ppx1qϕqpx1qϕ˚

r px2qϕspx2q

|r1 ´ r2|
dx1dx2, (186)

An important observation is that although the matrix H P C2nˆ2n , the number of coeffi-
cients scales much lower, namely, h “ rhp,qs P Cnˆn and v “ rvp,q,r,ss P Cnˆnˆnˆn. Moreover,
we note that

h “ h:

or in the case of real-valued atomic spin orbitals

h “ hJ

and that
vp,q,r,s “ vr,s,p,q “ v˚

q,p,s,r “ v˚
s,r,q,p

or in the case of real-valued atomic spin orbitals

vp,q,r,s “ vr,s,p,q “ vq,p,s,r “ vs,r,q,p “ vq,p,r,s “ vs,r,p,q “ vp,q,s,r “ vr,s,q,p
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8 Contractions

In quantum mechanics, the eigenstate is a nice quantity to have, but of interest are expectation
values

xΨ,OΨy (187)

since they correspond to measurable quantities, called observables. In the case of the Hamil-
tonian, the observable is the system’s energy. Remember that

rap, aqs` “ ra:
p, a

:
qs` “ 0 and ra:

p, aqs` “ δp,q. (188)

Then

xij|
ÿ

p,q

hp,qa
:
paq|kly “

ÿ

p,q

hp,qx´|ajaia
:
paqa

:

l a
:

k|´y (189)

and

x´|ajaia
:
paqa

:

l a
:

k|´y “ p´1qx´|aja
:
paiaqa

:

l a
:

k|´y ` δp,ix´|ajaqa
:

l a
:

k|´y

“ p´1q2 x´|a:
pajaiaqa

:

l a
:

k|´y
looooooooooomooooooooooon

“0

`p´1qδp,jx´|aiaqa
:

l a
:

k|´y

` p´1qδp,ix´|aja
:

l aqa
:

k|´y ` δp,iδl,qx´|aja
:

k|´y

“ p´1q2δp,jx´|aia
:

l aqa
:

k|´y ` p´1qδp,jδq,lx´|aia
:

k|´y

` p´1q2δp,i x´|a:

l ajaqa
:

k|´y
loooooooomoooooooon

“0

`p´1qδp,iδl,jx´|aqa
:

k|´y

` p´1qδp,iδl,q x´|a:

kaj |´y
looooomooooon

“0

`δp,iδl,qδk,j x´|I|´y
looomooon

“1

“ p´1q3δp,j x´|a:

l aiaqa
:

k|´y
loooooooomoooooooon

“0

`p´1q2δp,jδi,lx´|aqa
:

k|´y

` p´1q2δp,jδq,l x´|a:

kai|´y
looooomooooon

“0

`p´1qδp,jδq,lδi,k x´|I|´y
looomooon

“1

` p´1q2δp,iδl,j x´|a:

kaq|´y
looooomooooon

“0

`p´1qδp,iδl,jδqk x´|I|´y
looomooon

“1

` δp,iδl,qδk,j

“ p´1q3δp,jδi,l x´|a:

kaq|´y
looooomooooon

“0

`p´1q2δp,jδi,lδq,k x´|I|´y
looomooon

“1

` p´1qδp,jδq,lδi,k ` p´1qδp,iδl,jδqk ` δp,iδl,qδk,j

“ δp,jδi,lδq,k ´ δp,jδq,lδi,k ´ δp,iδl,jδqk ` δp,iδl,qδk,j

(190)

Hence

xij|
ÿ

p,q

hp,qa
:
paq|kly “

ÿ

p,q

hp,qpδp,jδi,lδq,k ´ δp,jδq,lδi,k ´ δp,iδl,jδqk ` δp,iδl,qδk,jq

“ hj,kδi,l ´ hj,lδi,k ´ hi,kδl,j ` hi,lδk,j
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Which can be evaluated in Op1q. For comparison, a näıve VecMatVec evaluations in first

quantization costs O
´

`

n
d

˘3
¯

. To reach the final formula of the matrix elements following the

procedure in Eq. (190) is very tedious. A shorter path is Wick’s theorem.

8.1 Wick’s contraction theorem

At the core of Wick’s theorem stands the normal ordering of an operator string O which
we shall denote by tOu. The normal ordering of an operator string means that all creation
operators are to the left of the string and all annihilation operators are to the right. The
procedure is to move all creation operators are to the left as if they anti-commuted.

Example 8.0.1. Let’s investigate the normal ordering of operator strings of length two:

tapaqu “ apaq ta:
pa

:
qu “ a:

pa
:
q ta:

paqu “ a:
paq tapa

:
qu “ ´a:

qap (191)

Example 8.0.2. Let’s look at a second, slightly more complicated example

tasara
:
paqa

:
ta

:
uu “ ta:

pasaraqa
:
ta

:
uu “ ´ta:

pa
:
tasaraqa

:
uu “ a:

pa
:
ta

:
uasaraq (192)

A key observation is that the vacuum expectation value of a normal ordered string of
operators is zero, i.e.,

x´|tOu|´y “ 0. (193)

Note that this is an immediate consequence of

0 “ ai|´y “

´

x´|a:

i

¯:

. (194)

We now define contractions of two operators as

xy “ xy ´ txyu (195)

For the creation and annihilation operators there are now four options in total, namely

a:
pa

:
q “ a:

pa
:
q ´ ta:

pa
:
qu “ a:

pa
:
q ´ a:

pa
:
q “ 0

apaq “ apaq ´ tapaqu “ apaq ´ apaq “ 0

a:
paq “ a:

paq ´ ta:
paqu “ a:

paq ´ a:
paq “ 0

apa
:
q “ apa

:
q ´ tapa

:
qu “ apa

:
q ` a:

qap “ δp,q

(196)

We see that the only non-zero contribution occurs when an annihilation operator appears
to the left of a creation operator.

We are now able to formulate Wick’s theorem:

Theorem 8.1. An operator string can be written as a linear combination of normal-ordered
strings, i.e.,
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ABC...XY Z “ tABC...XY Zu

`
ÿ

singles

tABC...XY Zu

`
ÿ

doubles

tABC...XY Zu

` ...

(197)

Corollary 8.1.1. Only fully contracted terms contribute to vacuum expectation values.

With these results, we may now return to the problem of evaluating vacuum expectation
values. Recall that by direct – yet tedious – application of the CAR we found

x´|ajaia
:
paqa

:

l a
:

k|´y “ δp,jδi,lδq,k ´ δp,jδq,lδi,k ´ δp,iδl,jδqk ` δp,iδl,qδk,j (198)

Alternatively to the bruit force derivation, we may apply Wick’s theorem to the expec-
tation value. Noting that only fully contracted terms contribute to the vacuum expectation
value we find

x´|ajaia
:
paqa

:

l a
:

k|´y “ x´|ajaia
:
paqa

:

l a
:

k|´y

` x´|ajaia
:
paqa

:

l a
:

k|´y

` x´|ajaia
:
paqa

:

l a
:

k|´y

` x´|ajaia
:
paqa

:

l a
:

k|´y

“ δp,jδi,lδq,k ´ δp,jδq,lδi,k ´ δp,iδl,jδqk ` δp,iδl,qδk,j

(199)

Clearly, this is much more tractable than the brut force derivation. However, it is still
very tedious when we are considering a general N -particle state. Consider the expectation
value

xi1i2...iN |a:
pa

:
qaras|j1j2...jNy “ x´|aiN ...ai1a

:
pa

:
qarasa

:

jN
...a:

j1
|´y (200)

which rapidly yields an intractable number of Wick contractions.

8.2 Particle-Hole formalism

Fortunately, Wick’s theorem extends to the Fermi-vaccuum, that is, a single reference Slater
determinant. To that end, we consider the Slater determinant

|ϕ0y “ |0y “ a:

jN
...a:

j1
|´y, (201)

and without loss of generality we assume ji “ i. As before, we denote the orbitals i P rrN ss

as occupied and a P rrKsszrrN ss as virtual. Before proceeding, we make the observation that
the vacuum state |´y is the only occupation number vector for which

ap|´y “ 0 @p P rrKss (202)
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holds. Interestingly, we observe that

aa|ϕ0y “ a:

i |ϕ0y “ 0 @i P rrN ss and a P rrKsszrrN ss (203)

This suggests that we can interpret the reference state |ϕ0y as “vacuum” state in a quasi-
particle picture, called the Fermi-vacuum. We can then define the ladder operators with
respect to this quasi-particle picture, i.e.,

cp :“

#

a:
p, if p P rrN ss

ap, else.
(204)

The physical interpretation of this is that c:
a “ a:

a creates a particle (electron) and c:

i “ ai
creates a hole (vacancy). We can then extend Wick’s theorem to this new framework where
we are seeking normal ordering with respect to the Fermi-vacuum, denoted by t¨u0. For the
one-body Hamiltonian we find

K
ÿ

p,q“1

hpqa
:
paq “

K
ÿ

p,q“1

hpq

ˆ

ta:
paqu0 ` ta:

paqu0

˙

(205)

Recall that the only non-zero contribution appears when an annihilation operator appears
to the left of a creation operator, i.e., cpc

:
q. Given the definition of the particle-hole operators

this only occurs if p, q P rrN ss, leading to

ta:
paqu0 “ δp,q1rrNssppq. (206)

Hence,
K
ÿ

p,q“1

hpqa
:
paq “

K
ÿ

p,q“1

hpqta
:
paqu0 `

N
ÿ

i“1

hii (207)

For the two-electron part, we note that the non-zero contractions are

a:
pa

:
rasaq “ ta:

pa
:
rasaqu0

` ta:
pa

:
rasaqu0 ` ta:

pa
:
rasaqu0 ` ta:

pa
:
rasaqu0 ` ta:

pa
:
rasaqu0

` ta:
pa

:
rasaqu0 ` ta:

pa
:
rasaqu0

(208)

Evaluating the contraction for the double contractions leads to

ta:
pa

:
rasaqu0 “ ´δp,s1rrNssppqδr,q1rrNsspqq

ta:
pa

:
rasaqu0 “ δp,q1rrNssppqδr,s1rrNssprq

(209)

which results in
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1

2

K
ÿ

pqrs“1

vp,q,r,s

ˆ

ta:
pa

:
rasaqu0 ` ta:

pa
:
rasaqu0

˙

“
1

2

K
ÿ

pqrs“1

vp,q,r,s
`

δp,q1rrNssppqδr,s1rrNssprq ´ δp,s1rrNssppqδr,q1rrNsspqq
˘

“
1

2

N
ÿ

p,r“1

pvp,p,r,r ´ vp,r,r,pq

(210)

Similarly, for the singles we find

ta:
pa

:
rasaqu0 “ ´ta:

pasa
:
raqu0 “ ´δp,s1rrNssppqta:

raqu0

ta:
pa

:
rasaqu0 “ ta:

paqa
:
rasu0 “ δp,q1rrNssppqta:

rasu0

ta:
pa

:
rasaqu0 “ δr,s1rrNssprqta:

paqu0

ta:
pa

:
rasaqu0 “ ´ta:

pa
:
raqasu0 “ ´δr,q1rrNssprqta:

pasu0

(211)

which results in

1

2

K
ÿ

pqrs“1

vp,q,r,s

ˆ

ta:
pa

:
rasaqu0 ` ta:

pa
:
rasaqu0 ` ta:

pa
:
rasaqu0 ` ta:

pa
:
rasaqu0

˙

“
1

2

K
ÿ

pqrs“1

vp,q,r,s

´

δp,q1rrNssppqta:
rasu0 ´ δp,s1rrNssppqta:

raqu0

`δr,s1rrNssprqta:
paqu0 ´ δr,q1rrNssprqta:

pasu0

¯

“
1

2

˜

K
ÿ

rs“1

N
ÿ

i“1

vi,i,r,sta
:
rasu0 ´

K
ÿ

qr“1

N
ÿ

i“1

vi,q,r,ita
:
raqu0

`

K
ÿ

pq“1

N
ÿ

i“1

vp,q,i,ita
:
paqu0 ´

K
ÿ

ps“1

N
ÿ

i“1

vp,i,i,sta
:
pasu0

¸

“
1

2

K
ÿ

pq“1

N
ÿ

i“1

´

vi,i,p,qta
:
paqu0 ´ vi,q,p,ita

:
paqu0

`vp,q,i,ita
:
paqu0 ´ vp,i,i,qta

:
paqu0

¯

“

K
ÿ

pq“1

N
ÿ

i“1

pvp,q,i,i ´ vp,i,i,qq ta:
paqu0

(212)

where used that

vp,q,r,s “ vr,s,p,q. (213)

Therefore, the final form of the electronic structure Hamiltonian is given by
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H “ EHF `

K
ÿ

p,q“1

˜

hpq `

N
ÿ

i“1

pvp,q,i,i ´ vp,i,i,qq

¸

ta:
paqu0 `

1

2

ÿ

pqrs

vpqrsta
:
pa

:
rasaqu0 (214)

where the Hartree–Fock energy appears naturally

EpHFq “

N
ÿ

i“1

hii `
1

2

N
ÿ

p,r“1

pvp,p,r,r ´ vp,r,r,pq “ xϕ0|H|ϕ0y. (215)

The normal ordered Hamiltonian is then given by

HN :“ H ´ xϕ0|H|ϕ0y “

K
ÿ

p,q“1

fp,qta
:
paqu0 `

1

2

ÿ

pqrs

vpqrsta
:
pa

:
rasaqu0 (216)

where

fp,q :“ hpq `

N
ÿ

i“1

pvp,q,i,i ´ vp,i,i,qq . (217)
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9 Post Hartree–Fock Methods

We will now explore post-Hartree–Fock methods, i.e., methods that aim to improve upon the
Hartree–Fock solution. The energetic correction to the Hartree Fock energy will be referred
to as correlation energy.

We being this chapter with a short exposition of excitation matrices which are a common
and useful tool to characterize post-Hartree–Fock methods. The N -particle Hartree–Fock
solu tion, often also referred to as reference state, takes the following simple form assuming
molecular orbitals:

|Ψ0y “ |1, ..., 1, 0, ...0y “

ˆ

0

1

˙

b ¨ ¨ ¨ b

ˆ

0

1

˙

loooooooooomoooooooooon

N´times

b

ˆ

1

0

˙

b ¨ ¨ ¨ b

ˆ

1

0

˙

loooooooooomoooooooooon

NB´N´times

P HN , (218)

where the first N entries in the occupation vector are set to one, and the remaining en-
tries are zero. As common for post-Hartree–Fock theory and outlined before, define Vocc “

rrN ss “ t1, ..., Nu and Vvirt “ rrNBsszrrN ss “ tN ` 1, ..., NBu as occupied and virtual orbitals,
respectively. Assume a1, ..., ak P Vvirt, and i1, ..., ik P Vocc. Then,

Xp
a1,...,ak
i1,...,ik

q “ a:
ak
...a:

a1ai1 ...aik (219)

defines an excitation matrix, and the set of all excitation matrices on HN , i.e., the N -particle
sector in F , is given by

EpHpNqq “

"

Xµ

ˇ

ˇ

ˇ
µ “

ˆ

a1, ..., ak
i1, ..., ik

˙

, aj P Vvirt, ij P Vocc, k ď N

*

. (220)

The excitation indices µ that excite from the occupied into the virtual orbitals define the
multi-index set

I “

#

µ

ˇ

ˇ

ˇ

ˇ

ˇ

µ “

ˆ

a1, ..., ak
i1, ..., ik

˙

, aj P Vvirt, ij P Vocc, 1 ď k ď N

+

. (221)

Note that the above construction of the excitation matrices yields that excitation matrices
are particle number preserving, i.e.,

rXµ, N s “ 0 @µ P I, (222)

where

N “

NB
ÿ

p“1

a:
pap (223)

describes the number operator. Note that this notation is ambiguous since N also de-
scribes the particle number, i.e., an element in N. However, it will be clear from context
whether N denotes the number operator or the particle number.

Since this set of excitations corresponds to simply replacing indices in the string r1, ..., N s

with indices in the string rN ` 1, ..., NBs (plus some additional permutation), we deduce that
there is a one-to-one relation between excitation operators and Slater determinants except
for the reference Slater determinant |Ψ0y. In other words, the excitation operators map the
reference Slater determinant |Ψ0y to all other Slater determinants.
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Proposition 9.0.1. There exists a one-to-one relation between the N -particle basis functions
BpNq and EpHpNqq Y tIu.

Proof. Note that this is true by construction! However, we may formalize the construction
a bit further to clearly see why this is true. Since excitation matrices are defined w.r.t. the
reference determinant |Ψ0y it follows immediately that |Ψ0y “ I|Ψ0y. Next consider

|ΨP y “ ξp1 ^ ...^ ξpN P HpNq, (224)

where P “ tp1, ..., pNu. Comparing t1, ..., Nu to tp1, ..., pNu we can identify a multi-index
µ describing the indices that have to be changed in t1, ..., Nu to obtain tp1, ..., pNu. More
precisely, µ describes an excitation from VocczP to P X Vvirt. Due to the canonical ordering,
this multi-index µ is unique. Then, by definition we obtain |ΨP y “ signpµqXµ|Ψ0y, which
shows the claim.

The above result is the fundamental result that allows us to express any target wave
function |Ψy P HpNq through a sequence of excitation matrieces applied to the reference
determinant instead of an expansion through basis vectors, i.e.,

|Ψy “ Ω|Ψ0y :“

˜

c0I `
ÿ

µ

cµXµ

¸

|Ψ0y. (225)

Before proceeding to the different post-Hartree–Fock methods, we highlight a few prop-
erties of the excitation matrices. The first property we consider is the commutativity of the
excitation matrices.

Proposition 9.0.2. Let Xµ, Xν P EpHpNqq. Then rXµ, Xνs “ 0.

Proof. Let

Xµ “ Xp
a1,...,ak
i1,...,ik

q “ a:
ak
...a:

a1ai1 ...aik and Xν “ X
p
b1,...,bℓ
j1,...,jℓ

q
“ a:

bℓ
...a:

b1
aj1 ...ajℓ .

The proof is conducted in two steps:
First, we seek to permute all creation operators in the commutator to the left using the

CAR. We begin with the following product and note that when permuting a:

bℓ
to the right of

a:
a1 we merely pick up a sign, since bℓ R Vocc, i.e.,

a:
ak
...a:

a1ai1 ...aika
:

bℓ
...a:

b1
aj1 ...ajℓ “ p´1qka:

ak
...a:

a1a
:

bℓ
ai1 ...aika

:

bℓ´1
...a:

b1
aj1 ...ajℓ .

This furthermore yields

a:
ak
...a:

a1ai1 ...aika
:

bℓ
...a:

b1
aj1 ...ajℓ “ p´1qℓ¨ka:

ak
...a:

a1a
:

bℓ
...a:

b1
ai1 ...aikaj1 ...ajℓ

and similar

a:

bℓ
...a:

b1
aj1 ...ajℓa

:
ak
...a:

a1ai1 ...aik “ p´1qℓ¨ka:

bℓ
...a:

b1
a:
ak
...a:

a1aj1 ...ajℓai1 ...aik .

Second, we wish to unify the index sequence of the creation and annihilation operators in
the two summands of the commutator. Applying the CAR again, we find

a:

bℓ
...a:

b1
a:
ak
...a:

a1aj1 ...ajℓai1 ...aik “ p´1qℓa:
ak
a:

bℓ
...a:

b1
a:
ak´1

...a:
a1aj1 ...ajℓai1 ...aik ,
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which yields

a:

bℓ
...a:

b1
a:
ak
...a:

a1aj1 ...ajℓai1 ...aik “ p´1q2˚ℓ¨ka:
ak
...a:

a1a
:

bℓ
...a:

b1
ai1 ...aikaj1 ...ajℓ .

Note that we have here assumed that µ X ν “ H, otherwise the expression is trivially zero
due to the nilpotency of the creation and annihilation operators. Overall this yields

rXµ,Xνs “ rXp
a1,...,ak
i1,...,ik

q, Xp
b1,...,bℓ
j1,...,jℓ

q
s

“ a:
ak
...a:

a1ai1 ...aika
:

bℓ
...a:

b1
aj1 ...ajℓ ´ a:

bℓ
...a:

b1
aj1 ...ajℓa

:
ak
...a:

a1ai1 ...aiℓ

“ p´1qℓ¨ka:
ak
...a:

a1a
:

bℓ
...a:

b1
ai1 ...aikaj1 ...ajℓ ´ p´1qℓ¨ka:

bℓ
...a:

b1
a:
ak
...a:

a1aj1 ...ajℓai1 ...aik

“ p´1qℓ¨ka:
ak
...a:

a1a
:

bℓ
...a:

b1
ai1 ...aikaj1 ...ajℓ ´ p´1q3¨ℓ¨ka:

ak
...a:

a1a
:

bℓ
...a:

b1
ai1 ...aikaj1 ...ajℓ

“ 0.
(226)

Another important property is that the excitation matrices inherited the nilpotency from
the fermionic creation and annihilation matrices.

Proposition 9.0.3. Let Xµ P EpHpNqq. Then X2
µ “ 0.

Proof. Recall that pa:
pq

2 “ papq
2 “ 0 by construction (see Eq. (179)). Let

Xµ “ Xp
a1,...,ak
i1,...,ik

q “ a:
ak
...a:

a1aik ...ai1 .

Then

X2
µ “ a:

ak
...a:

a1aik ...ai1a
:
ak
...a:

a1aik ...ai1

“ ´ a:
ak
a:
ak

loomoon

“0

a:
ak´1...a

:
a1aik ...ai1a

:
ak´1...a

:
a1aik ...ai1

“ 0.

(227)

9.1 Configuration interaction

In the CI method, the electronic wave function is constructed as a linear combination of Slater
determinants, i.e.,

|ΨCIy “ ΩCI|Ψ0y :“

˜

c0I `
ÿ

µ

cµXµ

¸

|Ψ0y. (228)

where we defined the CI wave operator ΩCI. The linear coefficients c are then determined by
a variational optimization of the expectation value of the electronic energy, i.e.,

0 “ ∇c
xΨCI |H|ΨCIy

xΨCI |ΨCIy
ô Hc “ Ec, (229)

where H is denoting the Hamiltonian in both the Fock space and in corresponding par-
ticle sector, respectively. Note that the right hand side corresponds to a standard hermitian
eigenvalue problem.
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When no restriction on the coefficient vectors c is made, we refer to this method as
full configuration interaction (FCI) method. For FCI wave functions, the number of Slater
determinants – therewith the size of the matrix H – increases very rapidly with the number
of electrons and with the number of orbitals. This behavior is illustrated in Table 2, where
we have listed the number of determinants with spin projection zero obtained by distributing
an even number of 2k electrons among 2k orbitals for 1 ď k ď 10.

2k Ndet

2 4
4 36
6 400
8 4 900
10 63 504
12 853 776
14 11 778 624
16 165 636 900
18 2 363 904 400
20 34 134 779 536

Table 2: The number of Slater determinants Ndet with spin projection zero obtained by
distributing k electrons among 2k orbitals

In Table 2, the number of Slater determinants Ndet is the product of the number of
determinants for the spin up and spin down electrons separately. Thus, for a system with n
orbitals containing k up electrons and k down electrons, the number of determinants is given
by

Ndet “

ˆ

n

k

˙2

(230)

Thus, the FCI expansion is numerically intractable for any but the smallest electronic
systems. Indeed, the usefulness of the FCI model is mostly that, for small systems, it may
provide benchmarks for other determinantal wave-function models. Therefore, for most sys-
tems, one has to truncate the (full) CI expansion. This can either be done at a given level of
excitations for manageable calculations referred to as truncated CI, e.g., CISD, CISDT, etc.,
or by restricting the expansion to a selected number of determinants referred to as selected
CI.

The truncated CI method has a serious shortcoming. Consider the size consistency prop-
erty that the total energy of a system composed of two non-interacting fragments A and B
must be the sum of the total energies of the separate fragments, i.e.,

EpA ¨ ¨ ¨Bq “ EpAq ` EpBq. (231)

This property is particularly important in chemistry since it is often concerned with systems
composed of fragments (atoms, molecules). It is of course satisfied for the exact total energy,
but not necessarily with approximate methods. A method which gives total energies satisfying
this property is said to be size-consistent. For example, the unrestricted HF method is
size consistent but the restricted HF method is generally not. The FCI method is size-
consistent, but the truncated CI method has the important drawback of being generally not
size-consistent.
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9.2 Perturbation Theory

9.2.1 General Rayleigh–Schrödinger perturbation theory

The basic idea of quantum-mechanical perturbation theory is to partition the Hamiltonian
operator into two parts

H “ H0 ` U (232)

where H0 is some zero-order Hamiltonian

U “ H ´H0 (233)

is the perturbation. The orthonormal eigensolutions to the zero-order Hamiltonian

H0|Ψ
p0q

i y “ E
p0q

i |Ψ
p0q

i y (234)

are then used to expand the eigenfunction |Ψ
p0q

i y of the exact Hamiltonian in Eq. (232). To
that end, we perform a perturbation theory argument, let λ be a dimensionless parameter that
can take on value ranging continuously from 0 (no perturbation) to 1 (the full perturbation).
The perturbed Hamiltonian is:

Hλ “ H0 ` λU (235)

The energy levels and eigenstates of the perturbed Hamiltonian are again given by

Hλ|Ψ
pλq

i y “ E
pλq

i |Ψ
pλq

i y (236)

The objective now is to express E
pλq

i and |Ψ
pλq

i y. If the perturbation is sufficiently weak, they
can be written as a Maclaurin power series in λ, i.e.,

E
pλq

i “ E
r0s

i ` λE
r1s

i ` λ2E
r2s

i ` ...

|Ψ
pλq

i y “ |Ψ
r0s

i y ` λ|Ψ
r1s

i y ` λ2|Ψ
r2s

i y ` ...
(237)

where

E
rks

i “
1

k!

dkE
pλq

i

dλk

ˇ

ˇ

ˇ

ˇ

λ“0

|Ψ
rks

i y “
1

k!

dk|Ψ
pλq

i y

dλk

ˇ

ˇ

ˇ

ˇ

ˇ

λ“0.

(238)

We will subsequently focus only on the ground state considerations. Note that the zeroth-

order wave function is just the solution to the zero-order Hamiltonian, i.e., |Ψ
r0s

0 y “ |Ψ
p0q

0 y.

We are moreover free to choose the normalization of |Ψ
pλq

0 y. A convenient choice is the

intermediate normalization, i.e. xΨ
p0q

0 |Ψ
pλq

0 y “ 1 for all λ. Since the zeroth-order wave function

is normalized as xΨ
p0q

0 |Ψ0y “ 1, it implies that xΨ
p0q

0 |Ψ
rks

0 y “ 0 for all k ě 1, i.e. the wave-
function correction at each order is orthogonal to the zeroth-order wave function. Inserting
Maclaurin power series in to the Schrödinger equation yields

pH0 ` λUqp|Ψ
r0s

0 y ` λ|Ψ
r1s

0 y ` λ2|Ψ
r2s

0 y ` ...q

“ pE
r0s

0 ` λE
r1s

0 ` λ2E
r2s

0 ` ...qp|Ψ
r0s

0 y ` λ|Ψ
r1s

0 y ` λ2|Ψ
r2s

0 y ` ...q
(239)
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Looking at this equation order by order in λ, we obtain at zeroth order

H0|Ψ
p0q

0 y “ E
p0q

0 |Ψ
p0q

0 y (240)

which is just eq. (234). At first order, we obtain

H0|Ψ
r1s

0 y ` U |Ψ
p0q

0 y “ E
p0q

0 |Ψ
r1s

0 y ` E
r1s

0 |Ψ
p0q

0 y. (241)

Projecting onto |Ψ
p0q

0 y yields

xΨ
p0q

0 |H0|Ψ
r1s

0 y ` xΨ
p0q

0 |U |Ψ
p0q

0 y “ E
p0q

0 xΨ
p0q

0 |Ψ
r1s

0 y ` E
r1s

0 xΨ
p0q

0 |Ψ
p0q

0 y

ô E
p0q

0 xΨ
p0q

0 |Ψ
r1s

0 y ` xΨ
p0q

0 |U |Ψ
p0q

0 y “ E
p0q

0 xΨ
p0q

0 |Ψ
r1s

0 y ` E
r1s

0 xΨ
p0q

0 |Ψ
p0q

0 y

ô xΨ
p0q

0 |U |Ψ
p0q

0 y “ E
r1s

0

(242)

whereas projecting onto |Ψ
p0q

i y. yields

xΨ
p0q

i |H0|Ψ
r1s

0 y ` xΨ
p0q

i |U |Ψ
p0q

0 y “ E
p0q

0 xΨ
p0q

i |Ψ
r1s

0 y ` E
r1s

0 xΨ
p0q

i |Ψ
p0q

0 y

ô E
p0q

i xΨ
p0q

i |Ψ
r1s

0 y ` xΨ
p0q

i |U |Ψ
p0q

0 y “ E
p0q

0 xΨ
p0q

i |Ψ
r1s

0 y ` E
r1s

0 xΨ
p0q

i |Ψ
p0q

0 y

ô xΨ
p0q

i |Ψ
r1s

0 y “ ´
xΨ

p0q

i |U |Ψ
p0q

0 y

E
p0q

i ´ E
p0q

0

.

(243)

Since xΨ
p0q

0 |Ψ
r1s

0 y “ 0, this leads to the first-order wave-function correction

|Ψ
r1s

0 y “ ´
ÿ

i‰0

xΨ
p0q

i |U |Ψ
p0q

0 y

E
p0q

i ´ E
p0q

0

|Ψ
p0q

i y (244)

Similarly, at second order perturbation we get

H0|Ψ
r2s

0 y ` U |Ψ
r1s

0 y “ E
p0q

0 |Ψ
r2s

0 y ` E
r1s

0 |Ψ
r1s

0 y ` E
r2s

0 |Ψ
p0q

0 y (245)

which yields

E
r2s

0 “ xΨ
p0q

0 |U |Ψ
r1s

0 y “ ´
ÿ

i‰0

|xΨ
p0q

i |U |Ψ
p0q

0 y|2

E
p0q

i ´ E
p0q

0

(246)

9.2.2 Møller-Plesset perturbation theory – spin-unrestricted theory

Møller-Plesset (MP) perturbation theory is a particular case of Rayleigh–Schrödinger per-
turbation theory for which the zeroth-order Hamiltonian is chosen to be the (many-electron)
Hartree–Fock (sometimes also simply called Fock) Hamiltonian

H0 “ F (247)

and the corresponding perturbation operator W is thus the difference between the electron-
electron Coulomb interaction and the effective HF potential Veff also called the fluctuation
potential. In MO formulation this reads

W “ V ´ Veff “
1

2

ÿ

p,q,r,s

vp,q,r,sa
:
pa

:
rasaq ´

ÿ

p,q

ÿ

iPrrNss

pvp,q,i,ia
:
paq ´ vp,i,i,qa

:
paqq (248)
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Zeroth order: The zeroth-order ground-state wave function |Ψ
r0s

0 y “ |Ψ
p0q

0 y is the HF single
determinant |Ψ0y, and the zeroth-order excited-state wave functions are the singly, doubly,
triply, etc., excited determinants, i.e., Xpaiq

|Ψ0y, X
pabijq

|Ψ0y, X
pabcijkq

|Ψ0y, etc. The zeroth-order

ground-state energy E
r0s

0 is given by the sum of occupied orbital energies, i.e.,

E
r0s

0 “
ÿ

iPrrNss

εi “ E
p0q

0 . (249)

We moreover note that for any given excitation index µ P I, i.e.,

µ “

ˆ

a1, ..., ak
i1, ..., ik

˙

, (250)

the function |Ψµy “ Xµ|Ψ0y “ a:
mN ...a

:
m1 |Ψ0y is an eigenfunction of the Fock matrix, with

F |Ψµy “

N
ÿ

i“1

εmi |Ψµy. (251)

Hence, the corresponding zeroth-order energy is given by

Ep0q
µ “

N
ÿ

i“1

εmi “ E
p0q

0 ` εa1 ` ...` εak ´ εi1 ` ...` εik . (252)

First order (MP1): Following the general power series expansion, we find that the first-
order energy correction is the expectation value of the HF determinant over the fluctuation
potential, which is

E
r1s

0 “ xΨ
p0q

0 |W |Ψ
p0q

0 y

“ xΨ0|W |Ψ0y

“ xΨ0|V |Ψ0y ´ xΨ0|Veff |Ψ0y

“
1

2

ÿ

i,jPrrNss

xij||ijy ´
ÿ

iPrrNss

xϕi|Veff |ϕiy

“ ´
1

2

ÿ

i,jPrrNss

xij||ijy

(253)

where we used the short hand notation

xij||ijy “ vi,i,j,j ´ vi,j,i,j . (254)

Therefore, the sum of the zeroth-order energy and first-order energy correction is simply the
HF energy

E
r0s

0 ` E
r1s

0 “
ÿ

iPrrNss

εi ´
1

2

ÿ

i,jPrrNss

xij||ijy

“
ÿ

iPrrNss

¨

˝hii `
ÿ

jPrrNss

xij||ijy

˛

‚´
1

2

ÿ

i,jPrrNss

xij||ijy

“
ÿ

iPrrNss

hii `
1

2

ÿ

i,jPrrNss

xij||ijy

“ EpHF q

(255)
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Second order (MP2): Since first order Møller-Plesset perturbation theory basically yields
Hartree–Fock, the first “relevant” and, in practice, mostly used Møller-Plesset variant is
second-order Møller-Plesset (MP2), i.e., the second order correction. For the energy correc-
tion, we find

E
r2s

0 “ EpMP2q
corr “ ´

ÿ

µPI

|xΨ0|W |Ψµy|2

E
p0q
µ ´ E

p0q

0

(256)

We observe that the numerator can be further simplified. The general rules that apply here
are the Slater–Condon rules, however, we can use a direct computation. For a singly excited
Slater determinant, i.e., |Ψµy “ Xpaiq

|Ψ0y “ |Ψa
i y

xΨ0|W |Ψa
i y “

ÿ

jPrrNss

xij||ajy ´ xi|Veff |ay

“
ÿ

jPrrNss

xij||ajy ´
ÿ

jPrrNss

xij||ajy

“ 0

(257)

For a doubly excited Slater determinant, we find

xΨ0|W |Ψab
ij y “ xij||aby (258)

For any higher-order excited Slater determinant, the numerator will be zero. Hence,

E
r2s

0 “ EpMP2q
corr “ ´

ÿ

µPI
|µ|“2

|xΨ0|W |Ψµy|2

E
p0q
µ ´ E

p0q

0

“ ´
ÿ

iăjPVocc

ÿ

aăbPVvirt

|xij||aby|2

εa ` εb ´ εi ´ εj
(259)

where we used that the denominator can be simplified using the zeroth-order energy expression
in eq. (252), namely,

Ep0q
µ ´ E

p0q

0 “ εa1 ` ...` εak ´ εi1 ` ...` εik . (260)

We moreover see that by using the antisymmetry property of the integral expression, i.e.
xij||aby “ ´xij||bay “ ´xji||aby, and the fact that xij||aby “ 0 if i “ j or a “ b, the MP2
correlation energy can also be written without constrained sum, i.e.,

EpMP2q
corr “ ´

1

4

ÿ

i,jPVocc

ÿ

a,bPVvirt

|xij||aby|2

εa ` εb ´ εi ´ εj
(261)

Third order (MP3): Similarly, we can continue computing third-order Møller Plesset.
After some tedious but straight forward work we find

E
r3s

0 “
1

8

ÿ

a,b,c,dPVocc

ÿ

rsPVvirt

xab||rsyxrs||cdyxcd||aby

pεr ` εs ´ εa ´ εbqpεr ` εs ´ εc ´ εdq

`
1

8

ÿ

a,bPVocc

ÿ

rstuPVvirt

xab||rsyxrs||tuyxtu||aby

pεr ` εs ´ εa ´ εbqpεt ` εu ´ εa ´ εbq

`
ÿ

a,b,cPVocc

ÿ

rstPVvirt

xab||rsyxcs||tbyxrt||acy

pεr ` εs ´ εa ´ εbqpεr ` εt ´ εa ´ εcq

(262)
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We note that the calculation of the third- or higher-order Møller-Plessert corrections is
often considered as not worthwhile in comparison with alternatives such as coupled-cluster
methods.

We note that we starting from an unrestricted HF calculation, MP perturbation theory is
correctly size consistent at each order. This is a consequence of the fact that the energy
correction at each order cannot be factorized in uncoupled sums. This coupling between all
orbital indices is known as the linked-cluster theorem.

9.2.3 Spin-restricted MP2

For closed-shell systems, with spin-singlet symmetry, the MP2 correlation energy expression
can be simplified by summing over the spin coordinates. This yields

EpMP2q
corr “ ´

1

4

ÿ

i,jPVocc

ÿ

a,bPVvirt

|xij|aby ´ xij|bay|2

εa ` εb ´ εi ´ εj

“ ´
1

4

ÿ

i,jPVocc

ÿ

a,bPVvirt

pxij|aby ´ xij|bayqpxab|ijy ´ xba|ijyq

εa ` εb ´ εi ´ εj

“ ´
1

2

ÿ

i,jPVocc

ÿ

a,bPVvirt

xij|abyxab|ijy ´ xij|abyxab|jiy

εa ` εb ´ εi ´ εj

(263)

where the last line was obtained by expanding, using the permutation symmetry property of
the integrals such as xab|ijy “ xba|jiy and relabeled the dummy indices. We can now perform
the summations over the spin coordinates. This yields

EpMP2q
corr “ ´

ÿ

i,jPVspa
occ

ÿ

a,bPVspa
virt

2xij|abyxab|ijy ´ xij|abyxab|jiy

εa ` εb ´ εi ´ εj (264)

where Vspa
occ and Vspa

occ denotes the spatial occupied and virtual orbitals, respectively.
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9.3 Coupled cluster theory

As has become apparent throughout this course, at the core of many electronic structure
methods stands the idea of seeking approximations to the wave function via a non-linear
ansatz. Coupled cluster methods are here no exception.

In coupled cluster theory, we embrace the ansatz that

|Ψy “ ΩCC|Ψ0y “ eT ptq|Ψ0y (265)

where
T ptq “

ÿ

µPI
tµXµ (266)

is the cluster matrix/operator and its expansion coefficients are called cluster amplitudes. For
sake of readability, we will subsequently not explicitly write the t dependence of T ptq, but use
simply T . In order to justify this ansatz mathematically, we need to understand the space of
cluster matrices better. To that end, we define the C-vector space

b “

#

T “
ÿ

µ

tµXµ

ˇ

ˇ

ˇ
µ P I

+

“ span
´

EpHpNqq

¯

, (267)

Utilizing the propositions discussed earlier, we will demonstrate that this vector space pos-
sesses a highly structured nature. Our next step is to introduce the concept of the exponential
of cluster matrices, which forms a key mathematical bridge between cluster matrices and wave
operators. This involves drawing a connection between the Lie algebra, as embodied by the
cluster matrices, and the Lie group comprising wave operators, thereby establishing an essen-
tial theoretical foundation of our modern understanding of coupled cluster theory. To begin
this exploration, we first assert that b constitutes some form of Lie algebra. As it turns out,
this assertion holds true.

Theorem 9.1. Elements in b commute and are nilpotent.

Proof. Recall that by Proposition 9.0.2 excitation matrices commute. Therefore, for T1, T2 P b
we find

rT1, T2s “
ÿ

µ

ÿ

ν

tµtνrXµ, Xνs “
ÿ

µ

ÿ

ν

tµtνrXν , Xµs “ rT2, T1s,

hence, cluster matrices also commute.
To show nilpotency, let T P b and we expand TN`1 which yields

TN`1 “
ÿ

k1`k2`¨¨¨`km“N`1
k1,k2,¨¨¨ ,kmě0

ˆ

N ` 1

k1, k2, . . . , km

˙ m
ź

j“1

ptµjXµj qkj , (268)

where
ˆ

N ` 1

k1, k2, . . . , km

˙

“
N ` 1!

k1! k2! ¨ ¨ ¨ km!

is a multinomial coefficient and m “ |I|. Note that ki ă 2 due to Proposition 9.0.3, meaning
that pk1, ..., kmq is a binary string containing N ` 1 ones. However, since |Vocc| “ N , there
exists one i P Vocc that appears at least twice in each matrix

śm
j“1ptµjXµj qkj and since a2i “ 0

this yields that TN`1 “ 0, which shows the claim.
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Remark 9.1.1. Theorem 9.1 illustrates that b equipped with the standard matrix commutator
r¨, ¨s forms a nilpotent Abelian Lie algebra.

We may now prove that coupled cluster theory is a meaningful ansatz, in the sense that
it enable to parameterize a sufficiently large portion of the N -particle Hilbert space.

Theorem 9.2. Let |Ψy P HpNq with xΨ0|Ψy “ 1. Then there exists a unique T P spanpEpHpNqqq

such that
|Ψy “ eT ptq|Ψ0y. (269)

Proof. Recall that in the full configuration interaction ansatz the wave function is expressed
as

|Ψy “

˜

c0I `
ÿ

µPI
cµXµ

¸

|Ψ0y. (270)

Since xΨ|Ψ0y “ 1, we know that c0 “ 1, and define

C :“
ÿ

µPI
cµXµ P b. (271)

Next, we define

T :“ logpI ` Cq “

8
ÿ

n“0

p´1qn

n` 1
Cn`1 “

N
ÿ

n“0

p´1qn

n` 1
Cn`1 (272)

where we used that C P b, and therefore CN`1 “ 0. As a polynomial of matrices, this
expression is well defined, which concludes the proof.

Remark 9.2.1. We call the condition that xΨ0,Ψy “ 1 intermediately normalized. In par-
ticular, the exponential ansatz in Eq. (265) is not normalized.

Remark 9.2.2. Due to the intermediate normalization, the coupled cluster ansatz can only
parameterize states that have overlap equal to one with the chosen reference |Ψ0y. However,
we may renormalize any wavefunction with non-zero overlap to the reference as

|Ψy “
1

xΨ0|Ψ̃y
|Ψ̃y (273)

which is now intermediately normalized. Put differently, the coupled cluster ansatz can pa-
rameterize any wave function that is not orthogonal to the chosen reference state |Ψ0y.

An important question to ask is how this ansatz affects our ability to express solutions to
the Schrödinger equation. We recall the Schrödinger equation

H|Ψ̃y “ E|Ψ̃y. (274)

Assuming that xΨ0|Ψ̃y ‰ 0, we define

|Ψy “
1

xΨ0|Ψ̃y
|Ψ̃y “ eT |Ψ0y (275)

noting that |Ψy still solves the Schrödinger equation as eigenspaces are linear spaces. Hence

HeT |Ψ0y “ EeT |Ψ0y. (276)
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Theorem 9.3. The linked coupled cluster equations are equivalent to solving the Schrödinger
equation, i.e.,

HeT |Ψ0y “ EeT |Ψ0y ô

#

xΨ0|e´THeT |Ψ0y “ E,

xΨµ|e´THeT |Ψ0y “ 0, @µ P I.
(277)

Proof. Let’s first assume that |Ψy solves the Schrödinger equation. Since the matrix expo-
nential is invertible we may write Eq. (276) as

e´THeT |Ψ0y “ E|Ψ0y (278)

When we project onto |Ψ0y we recover the energy since }Ψ0} “ 1, i.e.,

xΨ0|e´THeT |Ψ0y “ E|Ψ0y. (279)

Moreover, since 0 “ xΨµ|Ψ0y “ xΨ0|Xµ|Ψ0y for all µ P I, we get

xΨµ|e´THeT |Ψ0y “ 0. (280)

We now consider that the linked coupled cluster equations are fulfilled. Note that the
Slater determinants form a basis of HpNq, in particular,

I “ |Ψ0yxΨ0| `
ÿ

µPI
|ΨµyxΨµ| (281)

Let |Φy P HpNq be arbitrary, we find

xΦ|pH ´ EqeT |Ψ0y “ xΦ|eT e´T pH ´ EqeT |Ψ0y

“ xΦ|eT |Ψ0yxΨ0|e´T pH ´ EqeT |Ψ0y

`
ÿ

µPI
xΦ|eT |ΨµyxΨµ|e´T pH ´ EqeT |Ψ0y

“ xΦ|eT |Ψ0y xΨ0|e´THeT |Ψ0y
loooooooooomoooooooooon

“E

´ExΦ|eT |Ψ0y

`
ÿ

µPI
xΦ|eT |Ψµy xΨµ|e´THeT |Ψ0y

loooooooooomoooooooooon

“0

´E
ÿ

µPI
xΦ|eT |Ψµy xΨµ|Ψ0y

looomooon

“0

(282)

Hence,
xΦ|pH ´ EqeT |Ψ0y “ 0 (283)

for all |Φy P HpNq, which characterizes an eigenpair.

Remark 9.3.1. The trick to write

I “ |Ψ0yxΨ0| `
ÿ

µPI
|ΨµyxΨµ| (284)

is known as resolution of identity.

55



9.4 Size-extensivity

In quantum chemistry, we often need to compare energies of different systems. For example,
the atomization energy is obtained by subtracting the energy of the molecule from those of its
atoms. If we are to obtain reliable results, the energies of the molecule and its fragments must
be calculated with comparable accuracy. More generally, our methods should be such that
we may apply them to large and small systems alike and expect to obtain results of the same
accuracy. Obviously, terms such as “comparable accuracy” are vague. Fortunately, there are
situations where we may give a very precise meaning to this term, namely, for systems com-
prising two or more non-interacting subsystems. In such cases, our methods should generate
the same energy for the system, irrespective of whether we have carried out the calculations
for each subsystem separately or for all subsystems simultaneously. We summarize this re-
quirement by stating that the calculations and, more generally, the computational methods
should be size-extensive.

9.4.1 Size-extensivity of the exact wave function

Consider a system of two non-interacting molecular fragments A and B. For such a system,
the Hamiltonian operator may be written in the form

HpA¨¨¨Bq “ HpAq `HpBq (285)

where HpAq is associated with fragment A and HpBq with fragment B. Note that the ladder
operators ofHpAq anticommute with those ofHpBq since the associated orbitals are orthogonal,
i.e.,

rpapAq
p q

:
, apBq
q s` “ 0 (286)

Remark 9.3.2. The Hamiltonian in Eq. (285) is an idealized operator that cannot be realized
in practice, but – in the limit of an infinite separation between the fragments – it provides an
exact representation of the true operator.

The exact solution for the combined system represented by the Hamiltonian in Eq. (285)
satisfies the Schrödinger equation:

HpA¨¨¨Bq|ΨpA¨¨¨Bqy “ EpA¨¨¨Bq|ΨpA¨¨¨Bqy (287)

We shall consider how this solution is related to the exact solutions for the fragments

HpAq|ΨpAqy “ EpAq|ΨpAqy

HpBq|ΨpBqy “ EpBq|ΨpBqy
(288)

Recall that

|ΨpAqy “

ˆ

c0I `
ÿ

µPIpAq

cpAq
µ Xµ

˙

|Ψ0y “ Ω
pAq

FCI|Ψ0y

|ΨpBqy “

ˆ

c0I `
ÿ

µPIpBq

cpBq
µ Xµ

˙

|Ψ0y “ Ω
pBq

FCI|Ψ0y

(289)

and note that
ΩpAqΩpBq “ ΩpBqΩpAq (290)
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Then
HpA¨¨¨BqΩpAqΩpBq|Ψ0y “ pHpAq `HpBqqΩpAqΩpBq|Ψ0y

“ HpAqΩpAqΩpBq|Ψ0y `HpBqΩpAqΩpBq|Ψ0y

“ ΩpBqHpAqΩpAq|Ψ0y ` ΩpAqHpBqΩpBq|Ψ0y

“ pEpAq ` EpBqqΩpBqΩpAq|Ψ0y

(291)

Note that we have here used that

Ω
pAq

FCIΩ
pBq

FCI “ Ω
pA¨¨¨Bq

FCI (292)

is again a wave operator that is within the theoretical framework of the FCI ansatz. It is
important to point out that this is not true for truncated CI. To see this, consider a system
with N ą 2 electrons, then

Ω
pAq

CISDΩ
pBq

CISD ‰ Ω
pA¨¨¨Bq

CISD (293)

cannot be generally true as the left-hand side contains four-fold excitations – since we are
taking products of two-fold excitations. Hence, a sufficient requirement for size-extensivity is
that the corresponding wave operator factorizes.

9.4.2 Size-extensivity of the coupled-cluster ansatz

A key property of (truncated) coupled cluster ansatz as opposed to truncated configuration
interaction ansatz, is that it is size consistent. This is an immediate consequence of cluster
matrices being commutative, i.e.,

Ω
pAq

CCΩ
pBq

CC “ eT
pAq

eT
pBq

“ eT
pAq`T pBq

“ Ω
pABq

CC (294)

where T pAq ` T pBq is not only a valid cluster operator, but it also maintains the potential
truncated excitation rank imposed by the respective level of theory (vide infra).

9.5 The coupled cluster working equations

We have seen that the coupled cluster parametrization is not a true exponential because the
cluster matrices are nilpotent. Therefore, the coupled cluster working equations, i.e.,

0 “ xΨµ|e´THeT |Ψ0y @µ P I (295)

form a system of polynomial equations that we are trying to solve. Since cluster matrices
are nilpotent to order N , the working equations Eq. (295) are polynomials at most of order
2N . However this simple estimation does not take further structure of the Hamiltonian into
account. In particular, since the electronic structure Hamiltonian is a two-body operator,
matrix elements corresponding to states that are more than two-fold excitations apart will be
zero. This can be verified by direct computation via Wick’s theorem and is more generally
known as Slater–Condon rules:

For a one-body operator in an N -particle system, i.e.,

h “
ÿ

pq

hpqa
:
paq (296)

57



the matrix elements are given by

xΨ|h|Ψy “

N
ÿ

i“1

xϕi|h|ϕiy “

N
ÿ

i“1

hii

xΨ|h|Ψp
my “ xϕm|h|ϕpy “ hmp

xΨ|h|Ψpq
mny “ 0.

(297)

For a two-body operator in an N -particle system, i.e.,

V “
ÿ

pqrq

vpqrsa
:
pa

:
raqas (298)

the matrix elements are given by

xΨ|V |Ψy “
1

2

N
ÿ

i,j“1

xij||ijy

xΨ|V |Ψp
my “

N
ÿ

i“1

ˆ

xϕmϕi|ϕpϕiy ´ xϕmϕi|ϕiϕpy

˙

xΨ|V |Ψpq
mny “ xϕmϕn|ϕpϕqy ´ xϕmϕn|ϕqϕpy.

(299)

We may now apply these rules to the coupled cluster equations. We first note that the
similarity transformed Hamiltonian can be expressed using a series expansion known as the
Hadamard lemme, which is a consequence of the Baker–Campbell–Hausdorff (BCH) formula.
More precisely,

e´THeT “
ÿ

ně0

1

n!
rH,T sn (300)

where
rH,T sn “ rr...rrH,T s, T s, ....s, T s (301)

are n-fold nested commutators. Applying the Slater-Condon rules, we find that the only
non-zero contributions in Eq. (300) are given by

xΨµ|e´THeT |Ψ0y “

4
ÿ

n“0

xΨµ|rH,T sn|Ψ0y. (302)

More explicitly, we derived that

e´THeT “ H ` rH,T s `
1

2
rrH,T s, T s `

1

6
rrrH,T s, T s, T s `

1

24
rrrH,T s, T s, T s, T s (303)

where
rH,T s “ HT ´ TH,

rrH,T s, T s “ HT 2 ´ 2THT ` T 2H,

rrrH,T s, T s, T s “ HT 3 ´ 3THT 2 ` 3T 2HT ´ T 3H,

rrrrH,T s, T s, T s, T s “ HT 4 ´ 4THT 3 ` 6T 2HT 2 ´ 4T 3HT ` T 4H.

(304)

Hence, the coupled cluster working equations are a system of polynomial equations at most
of degree four.
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9.5.1 Truncated coupled cluster methods

Up to this point, we introduced a non-linear parametrization of the wave function that is of
equal size as the corresponding linear system. From a numerical perspective, this is a bad idea
since the complexity of solving non-linear systems is higher. However, when truncating the
coupled cluster ansatz, this procedure becomes computationally more feasible while providing
high-accuracy results which can be arguably accounted to the non-linear parametrization.

Truncations in the coupled cluster theory correspond to sparsity enforcement in the cluster
amplitude vector, i.e.,

T ptq “
ÿ

µPI
tµXµ «

ÿ

µPĨ

tµXµ “ T p ˜ptqq (305)

where Ĩ Ă I. In general, there are no limitations on how we pick the multi-index set Ĩ,
however, in practice, the most commonly used ones are

ISD “
␣

µ
ˇ

ˇ |µ| ď 2
(

and ID “
␣

µ
ˇ

ˇ |µ| “ 2
(

(306)

which correspond to the coupled cluster with singles and doubles (CCSD) and coupled cluster
with doubles (CCD) variants, respectively. With this restriction of the cluster amplitudes,
the working equations become over-determined. We, therefore, always restrict the projective
equations to the same set of excitations that are involved in the cluster expansion, i.e., we
solve

0 “ xΨµ|e´T pt̃qH|eT pt̃q|Ψ0y @µ P Ĩ. (307)

The CCD working equations: We consider the cluster expansion

TD “
ÿ

i,jPVocc

ÿ

a,bPVvirt

tabijX
ab
ij (308)

A vanilla version of the working equations that are implemented in quantum-chemistry
software packages can now be derived via direct application of Wick’s theorem and the Slater-
Condon rules. We illustrate this at hand of a few selected terms: We note that the zeroth
order term is directly given by the Slater-Condon rule, namely,

xΨcd
kl |H|Ψ0y “ xϕkϕl|ϕcϕdy ´ xϕkϕl|ϕdϕcy (309)

Before proceeding to the remaining terms, we first note that in this approximation only few
terms in the BCH expansion contribute:

xΨcd
kl |rH,TDs|Ψ0y “ xΨcd

kl |HTD ´ TDH|Ψ0y,

xΨcd
kl |rrH,TDs, TDs|Ψ0y “ xΨcd

kl |HT
2
D ´ 2TDHTD|Ψ0y.

(310)

We may now take a closer look at the first order term. We observe

xΨcd
kl |HT |Ψ0y ´ xΨcd

kl |TH|Ψ0y “
ÿ

i,j

ÿ

a,b

tabij xΨcd
kl |HX

ab
ij |Ψ0y ´

ÿ

i,j

ÿ

a,b

tabij xΨcd
kl |X

ab
ij H|Ψ0y

“
ÿ

i,j

ÿ

a,b

tabij xΨcd
kl |H|Ψab

ij y ´ tcdkl xΨ0|H|Ψ0y
(311)
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where now have to compute

xΨcd
kl |H|Ψab

ij y “
ÿ

pq

hpqxΨ
cd
kl |a

:
paq|Ψ

ab
ij y `

1

2

ÿ

pqra

vpqrsxΨ
cd
kl |a

:
pa

:
raqas|Ψ

ab
ij y

“
ÿ

pq

hpqxΨ0|a:

l a
:

kacada
:
paqa

:

ba
:
aaiaj |Ψ0y

`
1

2

ÿ

pqra

vpqrsxΨ0|a:

l a
:

kacada
:
pa

:
raqasa

:

ba
:
aaiaj |Ψ0y

(312)

Recall that by Corollary 8.1.1, only fully contracted terms contribute to the vacuum expec-
tation values. Hence

xΨ0|a:

l a
:

kacada
:
paqa

:

ba
:
aaiaj |Ψ0y “ xΨ0|ta:

l a
:

kacada
:
paqa

:

ba
:
aaiaju0|Ψ0y

` xΨ0|ta:

l a
:

kacada
:
paqa

:

ba
:
aaiaju0|Ψ0y

` xΨ0|ta:

l a
:

kacada
:
paqa

:

ba
:
aaiaju0|Ψ0y

` xΨ0|ta:

l a
:

kacada
:
paqa

:

ba
:
aaiaju0|Ψ0y

“ ...

(313)

9.6 CCSD(T) – The Gold Standard of Quantum Chemistry
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10 Molecular Properties and Response Theory

Consider an isolated molecular system governed by a Hamiltonian H0. We introduce a static
perturbation V pxq that depends on a parameter x, which represents the strength of the per-
turbation. By definition, the perturbation vanishes when x “ 0. Consequently, the perturbed
Hamiltonian is given by

Hpxq “ H0 ` V pxq (314)

and the total energy can be expanded with respect to x as

Epxq “
xΨpxq|Hpxq|Ψpxqy

xΨpxq|Ψpxqy
“ Ep0q ` Ep1qx`

1

2
Ep2qx2 ` ... (315)

where Ψpxq is the wave function of the state considered, which is usually the ground state. In
this expansion, Ep0q “ E0 is the unperturbed energy associated to the Hamiltonian H0, and
the energy derivatives

Ep1q “
dE
dx

ˇ

ˇ

ˇ

ˇ

x“0

; Ep2q “
d2E
dx2

ˇ

ˇ

ˇ

ˇ

x“0

; Ep3q “
d3E
dx3

ˇ

ˇ

ˇ

ˇ

x“0

; etc. (316)

are called time-independent molecular properties. They are characteristic of the molecule and
its quantum state, and contain important information about the response of the system to
the perturbation.

10.1 Geometric derivatives

One of the most significant examples of a static perturbation, within the Born–Oppenheimer
approximation, is a deformation of the molecular geometry. In this context, the parameter
δR describes changes in the positions of the nuclei:

EpRq “ Ep0q `
ÿ

i

Ep1q

i δRi `
1

2

ÿ

i,j

δRiEp2q

i,j δRj ` ... (317)

we call
Ep1q “ ∇RE (318)

the molecular gradient, and

Ep2q

i,j “
d2E

dRiRj
(319)

is called the molecular Hessian. These quantities are used in geometry optimization for
locating and characterizing critical points on the molecular potential energy surface (energy
minimum, saddle point at a transition state). There are also used for calculating spectroscopic
constants such as harmonic vibrational frequencies.

10.2 Electric properties

In the context of electronic properties, a central object is the charge density. It is the measure
of the probability of an electron being present at an infinitesimal element of space surrounding
any given point. Given the wavefunction |Ψy P HpNq we may define this via

nprq “ xΨ|ρ̂prq|Ψy (320)
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where

ρ̂prq “

N
ÿ

i“1

δpr ´ riq. (321)

This can be simplified straight-forwardly to

nprq “ N
ÿ

s1

...
ÿ

sN

ż

R3

...

ż

R3

|Ψpr, s1; r2, s2; ...; rN , sN q|2 dr2...drN . (322)

Moreover, when |Ψy takes the form of a single Slater determinant, this further simplifies to

nprq “

N
ÿ

i“1

|ϕiprq|2. (323)

In order to compute electronic properties, the perturbation applied is an external electrostatic
potential vprq. The corresponding interaction energy then reduces to

Eint “

ż

nprqvprq dr (324)

We then expand the potential around r0

vprq “ vpr0q `
ÿ

i

Bv

Bri

ˇ

ˇ

ˇ

ˇ

r“r0

ri `
1

2

ÿ

i,j

B2v

BriBrj

ˇ

ˇ

ˇ

ˇ

r“r0

rirj ` ...

“: vpr0q ´
ÿ

i

Eiri ´
1

2

ÿ

i,j

Fi,jrirj ` ...

(325)

where vpr0q is a constant potential, E is the corresponding electric field, and F is the electric
field gradient defined as

Ei “ ´
Bv

Bri

ˇ

ˇ

ˇ

ˇ

r“r0

and Fi,j “ ´
B2v

BriBrj

ˇ

ˇ

ˇ

ˇ

r“r0

(326)

The interaction energy can thus be expanded as

Eint “ vpr0q

ż

nprq dr ` Ei
ÿ

i

ż

nprqri dr `
1

2
Fi,j

ÿ

i,j

ż

nprqrirj dr ` ...

“ vpr0qq ´
ÿ

i

Eiµi ´
1

2

ÿ

i,j

Fi,jQi,j ` ...

(327)

where q is the electric charge of the system, µ is the electric dipole moment, and Q is the
electric quadrupole moment

r “

ż

nprq dr

µi “

ż

nprqri dr

Qi,j “

ż

nprqrirj dr

(328)
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Comparing these quantities with Eq. (315), we note that these properties can be defined as
energy derivatives:

q “
BEint

Bvpr0q

µi “ ´
BEint

BEi

Qi,j “ ´2
BEint

BFi,j

(329)

We can further decompose the dipole moment into permanent and field-induced contributions

µi “ µ0,1 `
ÿ

j

αi,jEj ` ... (330)

which leads to the definition of the permanent electric dipole moment

µ0,1 “ ´
BEint

BEi

ˇ

ˇ

ˇ

ˇ

E“0

(331)

and the electric dipole polarizability

αi,j “ ´
BEint

BEiBEi

ˇ

ˇ

ˇ

ˇ

E“0

(332)

10.2.1 Magnetic properties

Skip this for now...

10.3 Computation of properties

There are two ways of calculating derivatives: (1) by numerical differentiation and (2) by
analytical differentiation. In numerical differentiation, the derivatives are calculated by finite
differences or by polynomial fitting. In a nutshell:

• It is simple to implement.

• The numerical precision is limited.

• The computational efficiency is low.

• It is not general. Usually, only real-valued and static perturbations can be done.

In analytical differentiation, the derivatives are calculated explicitly from the analytical ex-
pressions. In a nutshell:

• It is (potentially) difficult to implement.

• The precision is higher.

• The computational efficiency is higher.

• It is more general. In particular, frequency-dependent perturbations are possible.
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10.3.1 Sum-over-state expression for exact wave functions

For “exact” wave functions (full configuration interaction in a basis), we can use straight-
forward perturbation theory to find the expression of the energy derivatives. Expanding the
perturbation operator V pxq in powers of x, we have

Hpxq “ H0 ` V p1qx`
1

2
V p2qx2 ` ... (333)

The first-order energy derivative is

Ep1q “ xΨ0|V p1q|Ψ0y (334)

where |Ψ0y is the exact wave function of the unperturbed Hamiltonian H0 for the state
considered, normalized such that xΨ0|Ψ0y “ 1. Similarly, the second-order energy derivative
is found from the first-order wave function correction, i.e.,

|Ψp1qy “
ÿ

n‰0

xΨn|V p1q|Ψ0y

E0 ´ En
|Ψny (335)

which yields
Ep2q “ xΨ0|V p2q|Ψ0y ` 2xΨp0q|V p1q|Ψp1qy

“ xΨ0|V p2q|Ψ0y ´ 2
ÿ

n‰0

xΨp0q|V p1q|ΨnyxΨn|V p1q|Ψ0y

En ´ E0
(336)

where |Ψny and En form a set of complete exact eigenstates and associated eigenvalues of
H0. This last expression is very impractical since we need to know all the exact states of H0,
which is a complicated many-body Hamiltonian. Moreover, for approximate methods such as
Hartree-Fock, it is not clear what we should use for |Ψny and En.

10.3.2 General expressions for approximate methods

In an approximate electronic structure method, the total energy Epxq is obtained by optimizing
parameters p “ pp1, p2...q in an energy function Epx,pq for each fixed value of x. The final
total energy Epxq is obtained for the optimal value of the parameters p˚pxq, which are functions
of x,

Epxq “ Epx, p˚pxqq. (337)

Note that the optimization is not necessarily variational, i.e., the optimization criterion is not
necessarily to minimize Epx, pq with respect to the parameters p.

Some examples:

• Hatree-Fock (KS-DFT): The parameters p are the orbital parameters. (variational)

• Configuration interaction (CI): The parameters p are the configuration coefficients.
(variational)

• Coupled cluster (CC): The parameters p are the cluster amplitudes. (not variational)
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10.3.3 First-order energy derivative

The first-order derivative of Epxq with respect to x is made of two terms

dEpxq

dx
“

BEpx,p˚pxqq

Bx
`
ÿ

i

BEpx,pq

Bpiq

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

Brp˚pxqsi

Bx
(338)

where the first term constitutes the explicit dependence on x and the second term constitutes
the implicit dependence on x. The derivative

Brp˚pxqsi

Bx
“: rLpxqsi (339)

is called the wave-function linear-response vector and contains information about how the
electronic structure changes when the system is perturbed. It is not straightforward to cal-
culate it since we do not know the explicit dependence of p˚ on x.

Note that when all parameters are variational, then there is an important simplification:
The stationary condition (zero electronic gradient)

BEpx,pq

Bpiq

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

“ 0 (340)

implies that the second term in Eq. (338) vanishes, so the first-order energy derivative reduces
to

dEpxq

dx
“

BEpx,p˚pxqq

Bx
(341)

and we do not need the wave-function linear-response vector.

For example, for the calculation of the HF molecular gradient, we need to consider only
the explicit dependence on the nuclear positions in the Hamiltonian and in the wave function,
but not the implicit dependence of the orbital coefficients on the nuclear positions since these
parameters are variational.

10.3.4 Second-order energy derivative

We will only consider the case where all the parameters are variational. In this case, the
second-order derivative of Epxq is obtained by taking the derivative of Eq. (341), i.e.,

d2Epxq

dx2
“

B2Epx,p˚pxqq

Bx2
`
ÿ

i

B2Epx,pq

BxBpi

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

Brp˚pxqsi

Bx
(342)

where the perturbed electronic gradient

B2Epx,p˚pxqq

BxBpi

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

(343)

is not zero. We thus now need the wave-function linear-response vector. Note that we need
only the first-order derivative of the wave function to calculate the second-order derivative of
the energy. More generally, we have the so-called 2n` 1 rule:

For variational parameters, the derivatives of the wave function to order n determine the
energy derivatives to order 2n` 1.
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10.3.5 Linear response equations

In order to obtain the wave-function linear-response vector Lpxq in the case where all the
parameters are variational, we start by noting that the stationary condition is true for all x,
i.e.,

0 “
BEpx,pq

Bpi

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

@x, (344)

which means that we can take the first-order derivative of Eq. (344) with respect to x:

B2Epx,pq

BxBpi

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

`
ÿ

j

B2Epx,pq

BpiBpj

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

Brp˚pxqsj

Bx
“ 0. (345)

We thus arrive at the linear response equations

ÿ

j

B2Epx,pq

BpiBpj

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

rLpxqsj “
ÿ

j

B2Epx,pq

BpiBpj

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

Brp˚pxqsj

Bx
“ ´

B2Epx,pq

BxBpi

ˇ

ˇ

ˇ

ˇ

p“p˚pxq

,

(346)
which is a linear system of equations whose solution gives the wave-function linear-response
vector Lpxq.

Remember that, in practice, we are interested in energy derivatives evaluated at x “ 0.
Therefore, these equations must in fact be solved using the unperturbed electronic Hessian

B2Epx “ 0,pq

BpiBpj
(347)

(independent of the perturbation). Since its dimensions are usually large, the response equa-
tions are usually solved iteratively without explicitly constructing and storing the Hessian
matrix.

10.3.6 Lagrangian formalism for non-variational parameters

For methods with non-variational parameters (CI, CC, MP2, ...), we can simplify the calcu-
lation by using the technique of Lagrange’s multipliers.

... Include CC here?

10.4 Example of linear-response equations for Hartree-Fock

10.4.1 Exponential parametrization

For optimizing the orbitals in the HF determinant wave function, it is convenient to use an
exponential parametrization

|Φpκqy “ eκ|Φ0y (348)

where eκ is a unitary operator performing rotations between occupied and virtual spin orbitals
in a reference determinant wave function |Φ0y. This rotation operator is constructed from
an anti Hermitian single-excitation operator, κ “ ´κ:, which can be written in the second-
quantization formalism as

κ “
ÿ

i

ÿ

a

´

κaia
:
aai ´ κ˚

aia
:

iaa

¯

(349)
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where a:

k and ak are the creation and annihilation operators of the spin orbital k, respec-
tively, and the indices a and r refer to occupied and virtual spin orbitals in the reference
determinant, respectively. The parameters κ “ κar are called the orbital rotation parameters.
In comparison to the orbital coefficients on the atomic basis functions, the orbital rotation
parameters have the advantage of providing a non-redundant parametrization of the wave
function so that one can vary them independently without having to impose any constraints.
At each step of the optimization, the orbitals in the reference determinant |Φ0y are updated
so that one always considers variations of the orbital rotation parameters around κ “ 0. The
expansion of the HF wave function with respect to κ thus writes

|Φpκqy “

ˆ

I ` κ `
1

2
κ2 ` ...

˙

|Φ0y

“ |Φ0y `
ÿ

a

ÿ

i

κai|Φ
a
i y `

1

2

ÿ

a,b

ÿ

i,j

κaiκbj |Φ
ab
ij y `

1

2

ÿ

a

ÿ

i

κ˚
aiκai|Φ

ab
ij y ` ...

(350)

where |Φai y “ a:
aai|Φ0y is a singly excited determinant and |Φabij y “ a:

ba
:
aaiaj |Φ0y is a doubly

excited Slater determinant.

10.4.2 Electronic gradient and Hessian

We now want to calculate the HF electronic gradient and Hessian, i.e., the first- and second-
order derivatives of the HF total energy

EHFpκq “
xΦpκq|H0|Φpκqy

xΦpκq|Φpκqy
(351)

with respect to κ. Here, we will only consider the case of real-valued orbitals and real-valued
orbital parameters κ˚

ar “ κar. In this case, we find

B|Φpκqy

Bκai

ˇ

ˇ

ˇ

ˇ

κ“0

“ |Φai y (352)

and
B2|Φpκqy

Bκaiκbj

ˇ

ˇ

ˇ

ˇ

κ“0

“ |Φ̃abij y “

#

|Φabij y, if a ‰ b or i ‰ j

´|Φ0y, if a “ b and i “ j
(353)

Assuming that the wavefunction |Φ0y is normalized, this yields

BEHFpκq

Bκai

ˇ

ˇ

ˇ

ˇ

κ“0

“ 2xΦai |H0|Φ0y. (354)

Thus, at convergence,
xΦai |H0|Φ0y “ 0 (355)

which is known as Brillouin’s theorem. For the Hessian, we find

B2EHFpκq

BκaiBκbj

ˇ

ˇ

ˇ

ˇ

κ“0

“ 2pAai,bj `Bai,bjq (356)

where
Aai,bj “ xΦai |H0 ´ EHF|Φbjy

Bai,bj “ xΦ̃abij |H0 ´ EHF|Φbjy “ xΦabij |H0 ´ EHF|Φbjy
(357)

with EHF “ EHFp0q.
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11 Special topics

11.1 Tailored coupled cluster

11.2 Green’s functions

68


