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1 Introduction and Motivation
Distribution Theory, often referred to as the theory of generalized functions, is a pow-
erful framework that extends classical analysis in a very natural way. It was devised to
rigorously handle objects like the Dirac delta function δ(x) and the Heaviside step func-
tion H(x). In standard calculus, such functions pose difficulties because they are either
discontinuous or not functions in the usual sense.

1.1 Why Do We Need Distributions?

• Singularities and Discontinuities: Many real-world phenomena—shock waves,
impulses in signal processing, point charges in physics—involve abrupt changes or
localized impacts that are not well captured by smooth functions.

• Generalized Derivatives: Classical differentiation fails to make sense of a dis-
continuity’s derivative; however, distributional derivatives provide a mathematically
consistent way to assign meaning to these problematic cases.

• Unified Framework: With distributions, methods such as the Fourier transform
can be applied to a wide class of objects, enabling powerful tools for solving partial
differential equations (PDEs) and analyzing signals.

The pivotal shift in Distribution Theory is to define an object not by its pointwise
values, but by how it acts on a certain class of nicely behaved (smooth) test functions.

2 Preliminaries: Function Spaces and Test Functions
In order to construct distributions rigorously, we first define the space of test functions.
These are smooth functions with compact support, and they play the role of “probes”
against which we evaluate our generalized functions.

2.1 Classical Notions

Smoothness. A function f : Rn → R is smooth (written f ∈ C∞(Rn)) if it has
continuous partial derivatives of all orders.

Compact Support. A function f has compact support if there exists a closed and
bounded set K ⊂ Rn such that f(x) = 0 for all x /∈ K. Informally, the function is
non-zero only in a finite region and vanishes outside.

2.2 Test Function Spaces

The space of all smooth functions φ with compact support in Rn is denoted by C∞
c (Rn)

or simply D(Rn). Its members are called test functions. In one dimension (n = 1), we
write C∞

c (R) or D(R).
• These test functions are infinitely differentiable: for any multi-index α = (α1, . . . , αn),

the partial derivative Dαφ(x) exists and is continuous.

• They vanish outside a finite interval (or region in higher dimensions), which ensures
all integrals of interest will converge absolutely.
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2.3 Concrete Examples of Test Functions

Smooth Bump Function (1D). A classic example is the following “bump” or “mollifier”-
type function:

φ(x) =

{
e
− 1

1−x2 , |x| < 1,

0, |x| ≥ 1.

This function is:

• Smooth (C∞) everywhere on R.

• Equal to zero outside the interval [−1, 1], hence it has compact support.

Such a function can be scaled to have support in a different interval, e.g., [−ϵ, ϵ], or shifted
so that its support is [a, b] for any real a < b.

Piecewise Polynomial with Compact Support. Another example is

ψ(x) =

{
x2(1− x)2, 0 ≤ x ≤ 1,

0, otherwise.

This function is C1, but if we want it C∞, we can smoothly “round out” the edges. Even
so, it suffices to illustrate how a polynomial can be packaged in a compact domain (e.g.,
[0, 1]) and forced to vanish outside.

All such functions—infinitely differentiable and vanishing outside a finite region—are
considered test functions. They will serve as the “inputs” to our distributions.

3 Distributions as Linear Functionals
Rather than thinking of a function f(x) in the usual sense, we define a distribution T to
be a continuous linear functional on the space of test functions.

3.1 Definition of a Distribution

Let D(Rn) = C∞
c (Rn) be the test function space. A distribution on Rn is a mapping

T : D(Rn) → R

such that:

1. Linearity: For all φ, ψ ∈ D(Rn) and scalars a, b ∈ R,

T (aφ+ bψ) = a T (φ) + b T (ψ).

2. Continuity (or boundedness): A certain continuity condition must hold in terms
of the standard topology on D(Rn) (which is typically phrased in terms of uniform
convergence of all derivatives within a bounded set). Roughly speaking, if a se-
quence of test functions (φk) converges to 0 together with all its derivatives, then
T (φk) → 0 as well.

This viewpoint solves many problems of classical analysis by focusing on the action
of T on φ rather than pointwise values.
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3.2 Examples of Distributions

Regular (or Induced) Distributions. Any locally integrable function f(x) on Rn

naturally induces a distribution Tf via

Tf (φ) =

∫
Rn

f(x)φ(x) dx.

Here, f(x) is called a regular distribution or an ordinary function-based distribution.

Dirac Delta Distribution. The Dirac delta is denoted by δ(x) and defined by its
action on a test function φ:

δ(φ) =

∫
R
δ(x)φ(x) dx = φ(0).

Clearly, no classical function δ(x) achieves this. Hence δ is a purely distributional object,
not an L1-function.

Heaviside Step Function. Another common example is the Heaviside function H(x),
defined by

H(x) =

{
0, x < 0,

1, x ≥ 0.

ThoughH(x) itself is locally integrable, its distributional derivative reveals the connection
H ′(x) = δ(x) in the sense of distributions (Section 5).

4 Operations on Distributions
In classical analysis, we perform operations on functions (e.g., summation, multiplication,
differentiation). The advantage of Distribution Theory is that many of these operations
extend to distributions seamlessly or with mild modifications.

4.1 Addition and Scalar Multiplication

The sum of two distributions T1 and T2 is well-defined by

(T1 + T2)(φ) = T1(φ) + T2(φ),

and similarly for scalar multiplication. This follows directly from the linearity require-
ment.

4.2 Shifts and Translations

For a distribution T on Rn and a shift vector a ∈ Rn, define the translated distribution
Ta by

Ta(φ) = T (φ(·+ a)).

For the Dirac delta, δ(x− a) is exactly the translation of δ(x) to the point a:

δx=a(φ) = φ(a).
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4.3 Multiplication by a Smooth Function

If g(x) is a smooth (infinitely differentiable) function, we can multiply a distribution T
by g to get a new distribution gT defined by

(gT )(φ) = T (gφ).

Importantly, g must be smooth. General multiplication by nonsmooth or distributional
“functions” is more subtle and cannot always be defined.

5 Distributional Derivatives
Perhaps the most significant extension from classical to distributional calculus is the
definition of a derivative for any distribution, even if it has no classical derivative.

5.1 Definition

Let T be a distribution. Its distributional derivative T ′ is another distribution defined by

T ′(φ) = −T
(
φ′), ∀φ ∈ D(R).

The minus sign ensures consistency with integration by parts. If Tf is induced by a locally
integrable function f , then T ′

f = Tf ′ in regions where f is classically differentiable, but it
may also capture contributions from points of discontinuity.

5.2 Illustrative Examples

Heaviside Derivative. For H(x),

TH(φ) =

∫ ∞

−∞
H(x)φ(x) dx =

∫ ∞

0

φ(x) dx,

and hence,

T ′
H(φ) = −TH

(
φ′) = −

∫ ∞

0

φ′(x) dx = −
[
φ(x)

]∞
0

= −
(
0− φ(0)

)
= φ(0).

But δ(φ) = φ(0). Thus H ′(x) = δ(x) in the distributional sense.

Discontinuous Functions. Consider a piecewise function with a jump at x = a.
Distributional differentiation automatically picks up a term proportional to δ(x − a)
representing that jump.

6 Applications

6.1 Partial Differential Equations (PDEs)

Distribution Theory provides powerful tools for solving PDEs, particularly those involving
generalized or weak solutions. In physics, it is typical to handle PDEs with point sources
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(e.g. a charge at a point in electrostatics) by introducing a delta function on the right-
hand side of the equation:

∇2ϕ(x) = −δ(x− a).

Such PDEs are more elegantly solved using distributions than with purely classical tech-
niques.

6.2 Signal Processing

The Dirac delta δ(t− a) is the “impulse” at time t = a. Convolution with δ(t− a) simply
shifts a signal, a foundational concept in linear time-invariant (LTI) systems theory.

6.3 Green’s Functions and Fundamental Solutions

In advanced mathematics, Green’s functions for linear operators are often expressed in
terms of distributions. For example, the Green’s function of the Laplacian in R3 satisfies

∆G(x) = δ(x).

Hence G is the fundamental solution of the Laplace equation, integral to many areas of
mathematical physics.

7 Additional Structures: Tempered Distributions
For certain applications (e.g., the Fourier transform of polynomials, exponentials, or
more generally, rapidly growing functions), a subspace of distributions known as tempered
distributions is employed. These can be thought of as distributions defined on the space
of rapidly decreasing test functions (the Schwartz space). This formalism is crucial in
quantum field theory and advanced harmonic analysis.

8 Properties and Advantages
1. Linearity: Linear combinations of distributions remain distributions.

2. Extended Differentiation: Every distribution has a derivative of every order,
giving rise to distributional derivatives.

3. Well-Behaved Under Integration: Integrals against test functions converge
naturally.

4. Robustness: Distributions easily handle boundary terms, point-source interac-
tions, and discontinuities that ordinary functions cannot.

9 Further Reading and References
• Laurent Schwartz, Théorie des distributions, Hermann, Paris, 1950.

• I.M. Gelfand and G.E. Shilov, Generalized Functions, Vol. 1–5, Academic Press,
1964+.
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• R.S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World
Scientific, 1994.

• V.S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor & Fran-
cis, 2002.

10 Conclusion
Distribution Theory provides a rigorous mathematical platform for dealing with objects
beyond the confines of classical functions. By interpreting these generalized functions
as linear functionals on test functions, it elegantly resolves conceptual issues around the
“Dirac delta,” the derivative of the Heaviside step, and other singular behaviors.

This framework is not merely an abstract curiosity: its applicability ranges from
solving partial differential equations to describing impulses in engineering systems and
analyzing fundamental phenomena in physics. With the development of tempered dis-
tributions and related function spaces, Distribution Theory remains a vibrant area of
research and application in modern analysis.

7


	Introduction and Motivation
	Why Do We Need Distributions?

	Preliminaries: Function Spaces and Test Functions
	Classical Notions
	Test Function Spaces
	Concrete Examples of Test Functions

	Distributions as Linear Functionals
	Definition of a Distribution
	Examples of Distributions

	Operations on Distributions
	Addition and Scalar Multiplication
	Shifts and Translations
	Multiplication by a Smooth Function

	Distributional Derivatives
	Definition
	Illustrative Examples

	Applications
	Partial Differential Equations (PDEs)
	Signal Processing
	Green's Functions and Fundamental Solutions

	Additional Structures: Tempered Distributions
	Properties and Advantages
	Further Reading and References
	Conclusion

