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1 Introduction

We aim to demonstrate the functional derivative in Hartree-Fock theory to derive the

Roothaan Hall equations. In order to accomplish this, we need to set a foundation of linear

algebra and matrix calculus.

2 Mathematical Background

We will start with some useful identities from linear algebra.

2.1 Linear Algebra

Let A,B ∈ Cm×n

• Tr
(
AB†) = Tr

(
B†A

)
Tr
(
AB†) = m∑

i=1

n∑
j=1

Ai,jBi,j =
m∑
i=1

n∑
j=1

Bi,jAi,j = Tr
(
B†A

)
• Tr

(
AB†) = Tr

((
AB†)†)∗

Tr
(
AB†) = m∑

i=1

n∑
j=1

Ai,jBi,j =
m∑
i=1

n∑
j=1

(
A†)∗

j,i

(
B†)∗

j,i
=

(
m∑
i=1

n∑
j=1

(
A†)

j,i

(
B†)

j,i

)∗

= Tr
((

AB†)†)∗
Now let us consider some matrix calculus results.
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2.2 Matrix Calculus

Note that we will be using the denominator layout convention, meaning that the dimension

of our derivatives will be the same as the dimension of the variable over which we are dif-

ferentiating (for instance, if we take have some function f where f(X) = a maps an m× n

matrix X to a scalar a and we differentiate over X, our result will be an m × n matrix).

First we will define some basic identities, then we will use them to prove more relevant results.

Once again, let A,B ∈ Cm×n

• ∇ATr
(
AB†) = ∇ATr

(
B†A

)
= B

• ∇A†Tr
(
AB†) = ∇A†Tr

(
B†A

)
= B†

• Matrix product rule: ∇A[f(A)g(A)] = ∇A[f(A)] · g(A) +∇A[g(A)]f(A)

Combining these rules, we immediately arrive at the following, very useful identity: let

A ∈ Cm×n and B ∈ Cm×m. Then, we have

∇ATr
(
A†BA

)
=∇A1Tr

(
A†

1BA2

)
+∇A2Tr

(
A†

1BA2

)
(1)

=BA+
[
A†B

]†
(2)

=BA+B†A (3)

Further generalizing this, if we have A ∈ Cm×n, B ∈ Cm×m, and C ∈ Cn×n, then we have

∇ATr
(
CA†BA

)
=∇A1Tr

(
CA†

1BA2

)
+∇A2Tr

(
CA†

1BA2

)
(4)

=∇A1Tr
(
A†

1BA2C
)
+∇A2Tr

(
CA†

1BA2

)
(5)

=BAC +
[
CA†B

]†
(6)

=BAC +B†AC† (7)

Lastly, consider once again A ∈ Cm×n and B ∈ Cm×m. Then, we have
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∇ATr
(
AA†BAA†) =∇A1Tr

(
A1A

†
2BA3A

†
4

)
+∇A2Tr

(
A1A

†
2BA3A

†
4

)
(8)

+∇A3Tr
(
A1A

†
2BA3A

†
4

)
+∇A4Tr

(
A1A

†
2BA3A

†
4

)
(9)

=
[
A†

2BA3A
†
4

]†
+∇A2Tr

(
A†

2BA3A
†
4A1

)
+∇A3Tr

(
A†

4A1A
†
2BA3

)
+ A1A

†
2BA3

(10)

=AA†B†A+BAA†A+B†AA†A+ AA†BA (11)

=AA†B†A+
(
AA†B†)†A+

(
AA†B

)†
A+ AA†BA (12)

3 Hartree-Fock Relevance

Now that we have derived these identities, we can consider how we may be able to apply

them within the framework of Hartree-Fock theory. In particular, consider the Lagrangian

associated with the Hartree-Fock method viewed as a constrained minimization problem

L[C,Λ] = EHF (C) − Tr
[
Λ
(
I−C†SC

)]
(equation 154 in the notes). In order to solve this

minimization, we need to differentiate this Lagrangian over C, the result of which can be

seen in equation 155 in the notes. Our task now, then, is to verify the provided formula by

applying the methods established above. Specifically, we aim to verify that

∇CL[C,Λ] = 2hC+
1

2
4J(CC†)C− 1

2
4K(CC†)C+ 2SCΛ

To complete this, let’s recall some relevant definitions:

• Si,j = ⟨χi|χj⟩

• EHF (C) = Tr
(
C†hC

)
+ 1

2
Tr
(
J
(
CC†)CC†)− 1

2
Tr
(
K
(
CC†)CC†)

• h = 1
2
T−V

• Tj,k =
1
2
⟨∇ϕj|∇ϕk⟩

• Vj,k = ⟨ϕj|V |ϕk⟩

• ϕi =
K∑
j=1

Cj,iχj

• J
(
CC†)

k,m
=

K∑
l,n=1

(
CC†)

n,l
Vk,l,m,n

3



• K
(
CC†)

k,n
=

K∑
l,m=1

(
CC†)

m,l
Vk,l,m,n

• Vi,j,k,l = ⟨χiχj∥χkχl⟩

Ok, now we are ready to consider the Lagrangian.

4 Procedure & Results

We will start by simplifying the formulation, then we will apply the differential operator.

We have

L[C,Λ] =EHF (C)− Tr
[
Λ
(
I−C†SC

)]
=EHF (C)− Tr

(
ΛI− ΛC†SC

)
=EHF (C)− Tr(ΛI) + Tr

(
ΛC†SC

)
Now we apply the differential operator. Note that Tr(ΛI) does not depend on C, so it’s

derivative will be 0. Thus, we have

∇CL[C,Λ] =∇CEHF (C) +∇CTr
(
ΛC†SC

)
=∇CTr

(
C†hC

)
+

1

2
∇CTr

(
J
(
CC†)CC†)− 1

2
∇CTr

(
K
(
CC†)CC†)+∇CTr

(
ΛC†SC

)
Let’s consider this term by term.

First, we have ∇CTr
(
C†hC

)
. This is of the same form as (1). Thus, we know that

∇CTr
(
C†hC

)
= hC+h†C. Due to the hermiticity of h, we then have that ∇CTr

(
C†hC

)
=

2hC.

Next, let’s consider ∇CTr
(
ΛC†SC

)
. This is of the same form as (4). Thus, we know

that ∇CTr
(
ΛC†SC

)
= SCΛ + S†CΛ†. Due to the hermiticity of S and Λ, we then have

that ∇CTr
(
ΛC†SC

)
= 2SCΛ

Now let’s consider ∇CTr
(
J
(
CC†)CC†). Based on the definition of J, if sufficient

care is taken of the relevant indices, this is functionally equivalent to ∇CTr
(
CC†VCC†),

which has the same form as (8). Thus, we know that, again subject to careful indexing,

∇CTr
(
J
(
CC†)CC†) = CC†V†C +

(
CC†V†)† C +

(
CC†V

)†
C + CC†VC. Due to the

hermiticity of V, we then have that CC†V = CC†V† = J
(
CC†). Additionally, due to the
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hermiticity of J, we have that ∇CTr
(
J
(
CC†)CC†) = 4J

(
CC†)C.

Finally, let’s consider ∇CTr
(
K
(
CC†)CC†). Similarly to J, based on the definition

of K, if sufficient care is taken of the relevant indices, this is functionally equivalent to

∇CTr
(
CC†VCC†), which has the same form as (8). Thus, we know that, again subject to

careful indexing, ∇CTr
(
K
(
CC†)CC†) = CC†V†C+

(
CC†V†)†C+

(
CC†V

)†
C+CC†VC.

Due to the hermiticity of V, we then have that CC†V = CC†V† = K
(
CC†). Additionally,

due to the hermiticity of K, we have that ∇CTr
(
K
(
CC†)CC†) = 4K

(
CC†)C.

Combining all of these pieces, we finally have that

∇CL[C,Λ] = 2hC+
1

2
4J
(
CC†)C− 1

2
4K
(
CC†)C+ 2SCΛ

as desired. Setting this expression equal to 0, as one must do to perform the desired opti-

mization, yields the Roothaan Hall generalized eigenvalue equations.
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