The Clebsch-Gordan Coefficients and their connection to spin states

DEPARTMENT OF MATHEMATICS 02/25/25 CHANAKA MAPA MUDIYANSELAGE ~Prof. Fabian Maximilian Faulstich

- Overview of Clebsch-Gordan Coefficients
- How do we work with Clebsch-Gordan Coefficients?
- Procedure to Find Clebsch-Gordan Coefficients
- Some Examples
- Derivation justification

Overview of Clebsch-Gordan Coefficients

- How do we work with Clebsch-Gordan Coefficients?
- Procedure to Find Clebsch-Gordan Coefficients
- Some Examples
- Derivation justification

I. Overview

Definition: Clebsch-Gordan Coefficients are the expansion coefficients of total angular momentum eigen-states in an uncoupled tensor product basis.

Let's talk about physics first:

Example:

$$|j_{1}m_{1}\rangle \otimes |j_{2}m_{2}\rangle = \begin{cases} |\frac{1}{2}\frac{1}{2}\rangle \otimes |\frac{1}{2}\frac{1}{2}\rangle &= |\uparrow\uparrow\rangle \\ |\frac{1}{2}\frac{1}{2}\rangle \otimes |\frac{1}{2}-\frac{1}{2}\rangle &= |\uparrow\downarrow\rangle \\ |\frac{1}{2}-\frac{1}{2}\rangle \otimes |\frac{1}{2}\frac{1}{2}\rangle &= |\downarrow\uparrow\rangle \\ |\frac{1}{2}-\frac{1}{2}\rangle \otimes |\frac{1}{2}-\frac{1}{2}\rangle &= |\downarrow\downarrow\rangle \end{cases} \qquad \qquad |JM\rangle = \begin{cases} |00\rangle \\ |11\rangle \\ |10\rangle \\ |10\rangle \\ |1-1\rangle \end{cases}$$

I. Overview

Mathematical version of the definition:

$$|JM>=\sum_{m_1,m_2}|j_1m_1j_2m_2\rangle\langle j_1m_1j_2m_2|JM\rangle$$

For example:

 $|10\rangle = c_1|\uparrow\uparrow\rangle + c_2|\uparrow\downarrow\rangle + c_3|\downarrow\uparrow\rangle + c_4|\downarrow\downarrow\rangle$

Overview of Clebsch-Gordan Coefficients

How do we work with Clebsch-Gordan Coefficients?

- Procedure to Find Clebsch-Gordan Coefficients
- Some Examples
- Derivation justification

II. How do we work with them?

Don't derive, refer to a table or software!!!

A good resource: "Annual review by the particle data group"

Rensselaer

II. How do we work with them?

Don't worry!!!... Let's do this step by step...

We always have to include a square root since this was omitted to improve readability

Note: A square-root sign is to be understood over every coefficient, e.g., for -8/15 read $-\sqrt{8/15}$.

- Overview of Clebsch-Gordan Coefficients
- How do we work with Clebsch-Gordan Coefficients?
- Procedure to Find Clebsch-Gordan Coefficients
- Some Examples
- Derivation justification

III. Procedure to Find C-G Coefficients

Given Steps...

1. Identify j1 and j2: Determine the ...

2. Identify m1 and m2: Find the ...

3. Identify the total angular momentum J and M : Locate the ...

4. Extract the coefficient: Read the ...

- Overview of Clebsch-Gordan Coefficients
- How do we work with Clebsch-Gordan Coefficients?
- Procedure to Find Clebsch-Gordan Coefficients

Some Examples

Derivation justification

Following the steps:

- 1.
- 2.
- 3.
- ٨
- 4.

3/2×1 5/2 +3/2 +1 5/2 5/2 3/2 +3/2 +1 1 +3/2 +3/2			
+3/2 0 2/5 3/5	5/2 3/2 1/2		
+1/2 +1 3/5 -2/5	+1/2 $+1/2$ $+1/2$		
+3/2-1 +1/2 0	3/5 1/15 -1/3	5/2 3/2 1/2	
-1/2+1	3/10 -8/15 1/6	-1/2 -1/2 -1/2	
	+1/2 -1	3/10 8/15 1/6	5 (2 2 (2
	-3/2 +1	3/5 -1/15 -1/3 1/10 -2/5 1/2 -	-3/2 -3/2
		-1/2-1 -3/2 0	3/5 2/5 5/2 2/5 -3/5 -5/2
			-3/2 -1 1

IV. Examples – (ii)

$\langle 1 \ -1 \ 1 \ 1 \ | \ 1 \ 0 \ angle$

Following the steps:

- 1.
- 2.
- 3.
- 4.

IV. Examples – (iii)

Following the steps:

1.

2.

3.

4.

$2 \times 2 \xrightarrow{+4}_{+4} \xrightarrow{+4}_{+3} \xrightarrow{+1}_{+3} \xrightarrow{+1}_{+2} \xrightarrow{+1}_{+2} \xrightarrow{+1}_{+1} \xrightarrow{+1}_{+2} +$	4/7 1/35 -2/5 7/2 5/2 3 2/7 - 18/35 1/5 +1/2 +1/2 +1 +2 -3/2 1/35 6/35 2 +1 - 1/2 12/35 5/14 0 +1/2 18/35 -3/35 -1 -1 +3/2 4/35 -27/70 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 1/4 20 1/4 20 1/4 20 1/4 20 1/4 20 1/4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
$\begin{array}{c} +2 & 0 \\ +1 & +1 & 4/7 \\ 0 & +2 & 3/14 \\ -1/2 & 2/7 \\ +2 & -1 & 1/1 \\ +2 & -1 & 1/1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+1 - 3/2 4/35 2//0 2/5 1/10 0 -1/2 18/35 3/35 -1/5 -1/5 -1 +1/2 12/35 -5/14 0 3/10 7/2 -2 +3/2 1/35 -6/35 2/5 -2/5 -3/2	-1/2 -3/2 1/2 1/2 3 -3/2 -1/2 1/2 -1/2 -3 -3/2 -3/2 -3/2 -3/2 1/2 -1/2 -3
$\begin{array}{c} +1 & 0 & 3/\\ 0 & +1 & 3/\\ -1 & +2 & 1/1 \end{array}$	7 - 1/5 - 1/14 - 3/10 7 - 1/5 - 1/14 - 3/10 4 - 3/10 - 3/7 - 1/5 +2 - 2 - 1/70 - 1/10 - 3/7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18/35 1/5 -1/35-2/5 7/2 5/2 16/35 2/5 -5/2 -5/2 1 2/2 4/7 2/7 7/2
$d_{2/2,0,1/2}^{3/2} = \frac{1+\cos\theta}{\cos\theta}\cos\frac{\theta}{2}$	+1 -1 8/35 2/5 1/ 0 0 18/35 0 -2 -1 +1 8/35 -2/5 1/ -2 +2 1/70-1/10 2	7/4 - 1/10 - 1/5 2/7 0 1/5 7/4 1/10 - 1/5 4 3 2 1 2/7 - 2/5 1/5 -1 -1 -1 -1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$d_{3/2,1/2}^{3/2} = -\sqrt{3} \frac{1 + \cos\theta}{2} \sin\frac{\theta}{2}$	$d_{2,2}^2 = \left(\frac{1+\cos\theta}{2}\right)^2$	+1 -2 1/14 3/10 3/7 1/5 0 -1 3/7 1/5 -1/14-3/10 -1 0 3/7 -1/5 -1/14 3/10 -2 +1 1/14-3/10 3/7 -1/5	4 3 2 -2 -2 -2
$d_{3/2,-1/2}^{3/2} = \sqrt{3} \frac{1 - \cos\theta}{2} \cos\frac{\theta}{2}$	$d_{2,1}^2 = -\frac{1+\cos\theta}{2}\sin\theta$	0 -2	3/14 1/2 2/7 4/7 0-3/7 4 3
$d_{3/2,-3/2}^{3/2} = -\frac{1-\cos\theta}{2}\sin\frac{\theta}{2}$	$d_{2,0}^2 = \frac{\sqrt{6}}{4} \sin^2 \theta \qquad \qquad d_{2,0}^2 = \frac{\sqrt{6}}{4} \sin^2 \theta$	${}^{2}_{1,1} = \frac{1+\cos\theta}{2} \left(2\cos\theta - 1\right) \boxed{-2 0}$	3/14 - 1/2 2/7 - 3 - 3 -1 -2 1/2 1/2 4 -2 -1 1/2 - 1/2 - 4
$d_{1/2,1/2}^{3/2} = \frac{3\cos\theta - 1}{2}\cos\frac{\theta}{2}$	$d_{2,-1}^2 = -\frac{1-\cos\theta}{2}\sin\theta \qquad d_2^2$	$_{1,0}^{2} = -\sqrt{\frac{3}{2}}\sin\theta\cos\theta$	-2 -2 1

IV. Examples – (iv – spin one-half system)

 $\langle \ \ \frac{1}{2} \ \ -\frac{1}{2} \ \ \frac{1}{2} \ \ \frac{1}{2} \ \ \frac{1}{2} \ \ | \ \ 0 \ \ 0 \ \
angle$ Following the steps: 1. 2. 3. 4.

- Overview of Clebsch-Gordan Coefficients
- How do we work with Clebsch-Gordan Coefficients?
- Procedure to Find Clebsch-Gordan Coefficients
- Some Examples
- Derivation justification

V. Derivation justification

Note: Since Clebsch-Gordan tables form an orthogonal matrix, they allow for transformations in both directions

why not change the world?[®]

