Single Slit Diffraction From Experiment to Theory

DEPARTMENT OF MATHEMATICAL SCIENCES

Jack Mandell 2/25/25

Experimental Setup and Observation

Questions one might ask

- Why does the diffraction pattern appear?
- How does the hole width (a) and wavelength (λ) change the diffraction pattern?

Interference

- Characteristic of waves caused by the superposition of waves
- **Constructive interference**: waves are in phase leading to larger amplitude
- Destructive interference: waves are out of phase, with largest effect when they are 90 degrees out of phase, leading to a decrease in amplitude

Huygens' Principle

- Due to Dutch Scientist Christiaan Huygens (1629-1695)
- Wavefront: a crest or a trough that moves at speed v

Every point on the wavefront acts as its own source of light, known as a **wavelet**, that spread out in the direction the light travels and at the same speed as the light itself.

These wavelets interfere and lead to one large wavefront

General Idea for Derivation of Intensity Curve

- Apply wave interference and Huygens' Principle
- Sketch:
 - Split wavefront into N equally spaced wavelets
 - add up all waves hitting a specific location angle θ away from center axis
 - Take the limit as $N \to \infty$

$$\begin{array}{c} \Delta y = \frac{1}{N} \\ \Delta E_{0} \sin \theta & \Delta E_{0} \sin(\omega t + \phi_{n}) \\ L \Rightarrow 2a, \Rightarrow assume beams are all parallel \\ \Delta B & \text{phase difference. blw adjacent waveletf} \\ \Delta y & \Delta E_{0} \sin(\omega t + \phi_{n}) \\ \Delta B & \text{phase difference. blw adjacent waveletf} \\ \Delta y & \Delta B & \Delta y \sin \theta \\ \Delta y & \Delta B & \Delta y \sin \theta \\ \Delta y & \Delta B & \Delta y \sin \theta \\ \Delta y & \Delta B \\ \Delta y & \Delta B \\ \Delta y & \Delta y & \Delta B & \Delta B$$

$$I = E_{\theta} \sin(\theta) = E_{\theta} \frac{1}{(B/2)} \sin(\omega t + \frac{B}{2}) \sin(\frac{B}{2})$$

$$= E_{\theta} \sin(\omega t + \frac{B}{2}) \sin(\frac{B}{2})$$

$$= E_{\theta} \sin(\omega t + \frac{B}{2})$$

$$= E_{\theta} \sin(\omega t + \frac{B}{2})$$

$$= E_{\theta} \sin(\omega t + \frac{B}{2})$$

$$= E_{\theta} - E_{\theta} \frac{1}{(B/2)} \sin(\frac{B}{2})$$

Analysis

- Note that as wavelength λ increases, β decreases.
 - the bright spots spread-out.
- If the width *a* increases, β increases.
 - the bright spots will come closer together

$$I(\theta) \propto E_0^2 \frac{\sin^2(\beta/2)}{(\beta/2)^2} \qquad \beta =$$

