Mathematical foundations of modern quantum simulations

Fabian M. Faulstich

Department of Mathematics, Rensselaer Polytechnic Institute, Troy, NY

What are quantum simulations?

Stability of matter

Color of gold

Superconductivity

Solid state physics

Towards a mathematical formulation

Towards a mathematical formulation

Absorbtion of Hydrogen atom

Towards a mathematical formulation

Two energetic contributions:

1. Kinetic energy: $h_{\text {kin }}=-\frac{1}{2} \Delta$
2. Coulomb energy: $V_{\text {coul }}=-\frac{1}{|r-R|}$

Towards a mathematical formulation

Absorbtion of Hydrogen atom

Two energetic contributions:

1. Kinetic energy: $h_{\text {kin }}=-\frac{1}{2} \Delta$
2. Coulomb energy: $V_{\text {coul }}=-\frac{1}{|r-R|}$

Birth of quantum chemistry ${ }^{a}$:

$$
\Delta \psi+\frac{2 m}{K^{2}}\left(E+\frac{e^{2}}{r}\right) \psi=0
$$

${ }^{2}$ Schrödinger, Annalen der physik (1926)

Schrödinger equation

The goal is to solve

$$
H \Psi=E \Psi
$$

where

$$
H=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{r_{i}}-\sum_{i=1}^{N} \sum_{j=1}^{N_{\mathrm{nuc}}} \frac{Z_{j}}{\left|r_{i}-R_{j}\right|}+\sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

and Ψ is a function defined on $\mathbb{R}^{3 N}$ for N electrons.
r_{i} position of the ith electron
R_{j}, Z_{j} position (fixed) and charge of the $\mathrm{j} t \mathrm{~h}$ nucleus

What is the problem?

Discretization scales exponentially in the number of electrons N
${ }^{1}$ The estimated number of particles in the universe is $\sim 10^{80}$

What is the problem?

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide $\left(\mathrm{CO}_{2}\right)$

Oxygen has 8 electrons
Carbon has 6 electrons
In total: $N=2 * 8+6=22$
${ }^{1}$ The estimated number of particles in the universe is $\sim 10^{80}$

What is the problem?

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide $\left(\mathrm{CO}_{2}\right)$

Oxygen has 8 electrons
Carbon has 6 electrons
In total: $N=2 * 8+6=22$

Naïve grid with 10 points per axis yields $10^{3 \cdot 22}=10^{66}$ grid points ${ }^{1}$
${ }^{1}$ The estimated number of particles in the universe is $\sim 10^{80}$

What is the problem?

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide $\left(\mathrm{CO}_{2}\right)$

Oxygen has 8 electrons
Carbon has 6 electrons
In total: $N=2 * 8+6=22$

Naïve grid with 10 points per axis yields $10^{3.22}=10^{66}$ grid points ${ }^{1}$

$$
\Rightarrow \text { Approximation is key! }
$$

${ }^{1}$ The estimated number of particles in the universe is $\sim 10^{80}$

Quantum chemical methods

Strongly correlated quantum chemistry

Strongly correlated quantum chemistry

This happens at various scales

Small molecules

Transition metal complexes

Twisted bilayer graphene

Strongly correlated quantum chemistry

This happens at various scales

Small molecules
Transition metal complexes

Strongly correlated systems are very difficult to compute

Strongly correlated quantum chemistry

This happens at various scales

Small molecules
Transition metal complexes

Twisted bilayer graphene

Strongly correlated systems are very difficult to compute Important failure modes for existing methods
\Rightarrow The research frontier of computational chemistry lies in strongly correlated systems

Roadmap

1. Quantum mechanics of the hydrogen atom
2. The hydrogen molecule and the Hartree-Fock method
3. Second quantization I
4. Second quantization II
5. Second quantization III
6. The linear combination of atomic orbitals ansatz
7. Gaussian-type atomic orbitals and high-dimensional integration
8. Size consistency and the coupled cluster ansatz
9. Truncating the coupled cluster ansatz and its working equations
10. Finding one root to the coupled cluster equations
11. Finding all roots to the coupled cluster equations

Quantum mechanics of the hydrogen atom

Analytic solution to the eigenvalue problem

$$
\left(\frac{1}{2} \Delta_{r}+\frac{1}{|r-R|}\right) \Psi(r)=-E \Psi(r)
$$

3D partial differential equation!

$Y_{3}^{0}=5 \cos ^{3} \theta-3 \cos \theta$

${ }^{c} Y_{3}^{1}=\left(5 \cos ^{2} \theta-1\right) \sin \theta \cos \phi$

The hydrogen molecule and the Hartree-Fock method

The Hamiltonian reads

$$
\begin{aligned}
H= & -\frac{1}{2} \Delta_{r_{1}}-\frac{1}{\left|r_{1}-R_{1}\right|}-\frac{1}{2} \Delta_{r_{2}}-\frac{1}{\left|r_{2}-R_{2}\right|} \\
& -\frac{1}{\left|r_{2}-R_{1}\right|}-\frac{1}{\left|r_{1}-R_{2}\right|}+\frac{1}{\left|r_{1}-r_{2}\right|}
\end{aligned}
$$

we want to solve

$$
H \Psi\left(r_{1}, r_{2}\right)=E \Psi\left(r_{1}, r_{2}\right)
$$

\Rightarrow Not possible!

Second quantization I:

Fock space, creation and annihiliation operators, CAR algebra

High-dimensional PDE's are hard!

- Can we think of matrices instead?
- Can we manipulate these matrices fast?

Second Quantization

Second quantization II:

Excitation operators, CCR algebra, nilpotent Lie algebra

The second quantization shows its teeth

Second quantization III:

Slater-Condon rules, Wick's theorem, Hartree-Fock revisited

Let's bring out the big guns...

The linear combination of atomic orbitals ansatz

Atomic orbitals

Molecular orbitals

$$
\frac{Y}{\eta} x
$$

Gaussian-type atomic orbitals and high-dimensional integration

We will face the following integral evaluation:

$$
v_{p, q, r, s}=\int_{X \times X} \frac{\xi_{p}^{*}\left(x_{1}\right) \xi_{q}\left(x_{1}\right) \xi_{r}^{*}\left(x_{2}\right) \xi_{s}\left(x_{2}\right)}{\left|r_{1}-r_{2}\right|} d \lambda(x) d \lambda(x)
$$

Size consistency and the coupled cluster ansatz

What do we really care about?

Truncating the coupled cluster ansatz and its working equations

$$
\begin{aligned}
& E(t)=\left\langle\Psi_{0}, H \Psi_{0}\right\rangle+\sum_{I A} f_{I A} t_{I}^{A}+\frac{1}{4} \sum_{I J A B}\langle I J \| A B\rangle t_{I J}^{A B}+\frac{1}{2} \sum_{I J A B}\langle I J \| A B\rangle t_{I}^{A} t_{I}^{B}, \\
& f(t)_{I}^{A}=f_{I A}+\sum_{C} f_{A C} t_{I}^{C}-\sum_{K} f_{K I} t_{K}^{A}+\sum_{K C}\langle K A \| C I\rangle t_{C}^{K}+\sum_{K C} f_{K C} t_{I K}^{A C} \\
& +\frac{1}{2} \sum_{K C D}\langle K A \| C D\rangle t_{K I}^{C D}-\frac{1}{2} \sum_{K L C}\langle K L \| C I\rangle t_{K L}^{C A}-\sum_{K C} f_{K C} t_{I}^{C} t_{K}^{A}-\sum_{K L C}\langle K L \| C I\rangle t_{K}^{C} t_{L}^{A} \\
& +\sum_{K C D}\langle K A \| C D\rangle t_{K}^{C} t_{I}^{D}-\sum_{K L C D}\langle K L \| C D\rangle t_{K}^{C} t_{I}^{D} t_{L}^{A}+\sum_{K L C D}\langle K L \| C D\rangle t_{C}^{K} t_{L I}^{D A} \\
& -\frac{1}{2} \sum_{K L C D}\langle K L \| C D\rangle t_{K I}^{C D} t_{L}^{A}-\frac{1}{2} \sum_{K L C D}\langle K L \| C D) t_{K}^{C A} t_{I}^{D} \\
& f(t)_{I J}^{A B}=\langle I J \| A B\rangle+\sum_{C}\left(f_{B C} t_{I J}^{A C}-f_{A C} t_{I J}^{B C}\right)-\sum_{K}\left(f_{K J} t_{I K}^{A B}-f_{K I}{ }^{t} A B\right) \\
& +\frac{1}{2} \sum_{K L}\langle K L \| I J\rangle t t_{K L}^{A B}+\frac{1}{2} \sum_{C D}(A B \| C D\rangle t_{I J}^{C D}+P(I J) P(A B) \sum_{K C}\langle K B \| C J\rangle t_{I K}^{A C} \\
& +P(I J) \sum_{C}\langle A B \| C J\rangle t_{I}^{C}-P(A B) \sum_{K}\langle K B \| I J\rangle t_{A}^{K} \\
& +\frac{1}{2} P(I J) P(A B) \sum_{K L C D}\langle K L \| C D\rangle t_{I K}^{A C} t_{L J}^{D B}+\frac{1}{4} \sum_{K L C D}\langle K L \| C D\rangle t_{I J}^{C D} t_{K L}^{A B} \\
& +\frac{1}{2} P(A B) \sum_{K L C D}\langle K L \| C D\rangle t_{I J}^{A C} t_{K L}^{B D}-\frac{1}{2} P(I J) \sum_{K L C D}\langle K L \| C D) t_{I K}^{A B} t_{J L} \\
& +\frac{1}{2} P(A B) \sum_{K L}\langle K L \| I J\rangle t_{K}^{A} t_{L}^{B}+\frac{1}{2} P(I J) \sum_{C D}\langle A B \| C D\rangle t_{I}^{C} t_{J}^{D} \\
& -P(I J) P(A B) \sum_{K C}\langle K B \| I C) t_{K}^{A} t_{J}^{C}+P(A B) \sum_{K C} f_{K C} t_{K}^{A} t_{I J}^{B C} \\
& +P(I J) \sum_{K C} f_{K C} t_{I}^{C} t_{J K}^{A B}-P(I J) \sum_{K L C}(K L \| C I) t_{K}^{C} t_{L J}^{A B} \\
& +P(A B) \sum_{K C D}\langle K A \| C D\rangle t_{K}^{C} t_{I J}^{D B}+P(I J) P(A B) \sum_{K C D}\langle A K \| D C\rangle t_{I}^{D} t_{J K}^{B C} \\
& +P(I J) P(A B) \sum_{K L C}\langle K L \| I C\rangle t_{L}^{A} t_{J K}^{B C}+\frac{1}{2} P(I J) \sum_{K L C}\langle K L \| C J\rangle t_{I}^{C} t_{K L}^{A B} \\
& -\frac{1}{2} P(A B) \sum_{K C D}\langle K B \| C D\rangle t_{K}^{A} t_{I J}^{C D}+\frac{1}{2} P(I, J) P(A B) \sum_{K L C}\langle K B \| C D) t_{I}^{t^{t}}{ }_{K}^{A} t_{J}^{D} \\
& +\frac{1}{2} P(I J) P(A B) \sum_{K L C}\langle K L \| C J\rangle t_{I}^{C} t_{K}^{A} t_{L}^{B}-P(I J) \sum_{K L C D}\langle K L \| C D\rangle t_{K}^{C} t_{I}^{D} t_{L}^{A B} \\
& -P(A B) \sum_{K L C D}\langle K L \| C D\rangle t_{K}^{C} t_{L}^{A} t_{I J}^{D B}-\frac{1}{4} P(I J) \sum_{K L C D}\langle K L \| C D\rangle t_{I}^{C} t_{J}^{D} t_{K}^{A B} \\
& +\frac{1}{4} P(A B) \sum_{K L C D}\langle K L \| C D\rangle t_{K}^{A} t_{L}^{B} t_{I J}^{C D}+P(I J) P(A B) \sum_{K L C D}\langle K L \| C D) t_{I}^{G} t_{L}^{B} t_{K}^{A D} \\
& +\frac{1}{4} P(I J) P(A B) \sum_{K L C D}\langle K L \| C D\rangle t_{I}^{C} t_{K}^{A} t_{J}^{D} t_{L}^{B}
\end{aligned}
$$

Finding one root to the coupled cluster equations

Finding all roots to the coupled cluster equations

Seeking:

$$
f(\mathrm{t})=\left[\begin{array}{c}
f_{1}(\mathrm{t}) \\
\vdots \\
f_{m}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(t_{1}, \ldots, t_{m}\right) \\
\vdots \\
f_{m}\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right]=0
$$

Find a start system g, and then continuously deform g into f

Davidenko differential equation:

$$
\frac{\partial}{\partial \mathrm{t}} H(\mathrm{t}, \lambda)\left(\frac{\mathrm{d}}{\mathrm{~d} \lambda} \mathrm{t}(\lambda)\right)+\frac{\partial}{\partial \lambda} H(\mathrm{t}, \lambda)=0, \quad \mathrm{t}(1)=\mathrm{s}_{0},
$$

Finding all roots to the coupled cluster equations
Seeking:

$$
f(\mathrm{t})=\left[\begin{array}{c}
f_{1}(\mathrm{t}) \\
\vdots \\
f_{m}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(t_{1}, \ldots, t_{m}\right) \\
\vdots \\
f_{m}\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right]=0
$$

