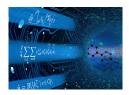
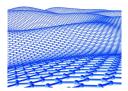
Mathematical foundations of modern quantum simulations

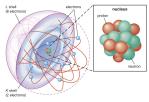




Fabian M. Faulstich

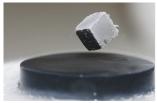
Department of Mathematics, Rensselaer Polytechnic Institute, Troy, NY

What are quantum simulations?

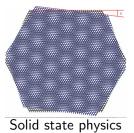


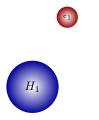
Stability of matter

Color of gold

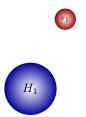


Superconductivity





Absorbtion of Hydrogen atom

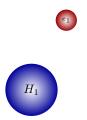


Absorbtion of Hydrogen atom

Two energetic contributions:

1. Kinetic energy:
$$h_{\rm kin} = -\frac{1}{2}\Delta$$

2. Coulomb energy:
$$V_{\text{coul}} = -\frac{1}{|r-R|}$$



Absorbtion of Hydrogen atom

Two energetic contributions:

1. Kinetic energy:
$$h_{\rm kin} = -\frac{1}{2}\Delta$$

2. Coulomb energy:
$$V_{\text{coul}} = -\frac{1}{|r-R|}$$

Birth of quantum chemistry^a:

$$\Delta \psi + \frac{2m}{K^2} \left(E + \frac{e^2}{r} \right) \psi = 0$$

^aSchrödinger, Annalen der physik (1926)

Schrödinger equation

The goal is to solve

$$H\Psi = E\Psi$$
,

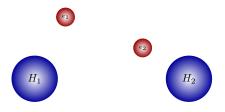
where

$$H = -rac{1}{2}\sum_{i=1}^N \Delta_{r_i} - \sum_{i=1}^N \sum_{j=1}^{N_{\mathrm{nuc}}} rac{Z_j}{|r_i - R_j|} + \sum_{i=1}^N \sum_{j>i}^N rac{1}{|r_i - r_j|}$$

and Ψ is a function defined on \mathbb{R}^{3N} for N electrons.

 r_i position of the *ith* electron

 R_j , Z_j position (fixed) and charge of the jth nucleus



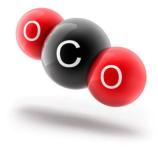
Discretization scales exponentially in the number of electrons N

 $^1 The$ estimated number of particles in the universe is $\sim 10^{80}$

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide (CO₂)

Oxygen has 8 electrons Carbon has 6 electrons In total: N = 2 * 8 + 6 = 22

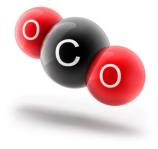


 $^{^1} The$ estimated number of particles in the universe is $\sim 10^{80}$

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide (CO₂)

Oxygen has 8 electrons Carbon has 6 electrons In total: N = 2 * 8 + 6 = 22



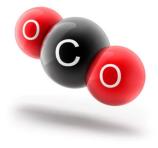
Naïve grid with 10 points per axis yields $10^{3 \cdot 22} = 10^{66}$ grid points¹

 $^{^1 {\}sf The}$ estimated number of particles in the universe is $\sim 10^{80}$

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide (CO₂)

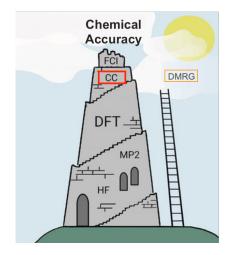
Oxygen has 8 electrons Carbon has 6 electrons In total: N = 2 * 8 + 6 = 22



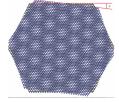
Naïve grid with 10 points per axis yields $10^{3 \cdot 22} = 10^{66}$ grid points¹ \Rightarrow Approximation is key!

 $^{^1 {\}sf The}$ estimated number of particles in the universe is $\sim 10^{80}$

Quantum chemical methods



This happens at various scales

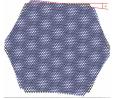


Small molecules

Transition metal complexes

Twisted bilayer graphene

This happens at various scales



Small moleculesTransition metal
complexesTwisted bilayerStrongly correlated systems are very difficult to compute

This happens at various scales

Small moleculesTransition metal
complexesTwisted bilayerStrongly correlated systems are very difficult to computeImportant failure modes for existing methods

 \Rightarrow The research frontier of computational chemistry lies in strongly correlated systems

Roadmap

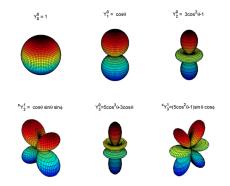
- 1. Quantum mechanics of the hydrogen atom
- 2. The hydrogen molecule and the Hartree-Fock method
- 3. Second quantization I
- 4. Second quantization II
- 5. Second quantization III
- 6. The linear combination of atomic orbitals ansatz
- 7. Gaussian-type atomic orbitals and high-dimensional integration
- 8. Size consistency and the coupled cluster ansatz
- 9. Truncating the coupled cluster ansatz and its working equations
- 10. Finding one root to the coupled cluster equations
- 11. Finding all roots to the coupled cluster equations

Quantum mechanics of the hydrogen atom

Analytic solution to the eigenvalue problem

$$\left(rac{1}{2}\Delta_r+rac{1}{|r-R|}
ight)\Psi(r)=-E\Psi(r)$$

3D partial differential equation!



The hydrogen molecule and the Hartree-Fock method

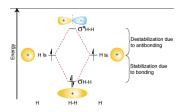
The Hamiltonian reads

$$H = -\frac{1}{2}\Delta_{r_1} - \frac{1}{|r_1 - R_1|} - \frac{1}{2}\Delta_{r_2} - \frac{1}{|r_2 - R_2|} \\ - \frac{1}{|r_2 - R_1|} - \frac{1}{|r_1 - R_2|} + \frac{1}{|r_1 - r_2|}$$

we want to solve

$$H\Psi(r_1,r_2)=E\Psi(r_1,r_2)$$

 \Rightarrow Not possible!



Second quantization I:

Fock space, creation and annihiliation operators, CAR algebra

High-dimensional PDE's are hard!

- Can we think of matrices instead?
- Can we manipulate these matrices fast?

Second Quantization

Second quantization II:

Excitation operators, CCR algebra, nilpotent Lie algebra

The second quantization shows its teeth

Second quantization III:

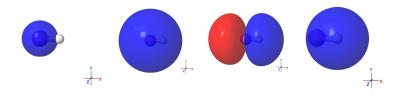
Slater-Condon rules, Wick's theorem, Hartree-Fock revisited

Let's bring out the big guns...

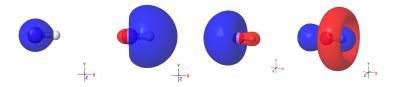
(Wick'ed guys)

The linear combination of atomic orbitals ansatz

Atomic orbitals



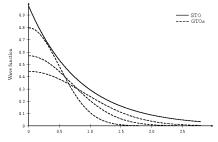
Molecular orbitals



Gaussian-type atomic orbitals and high-dimensional integration

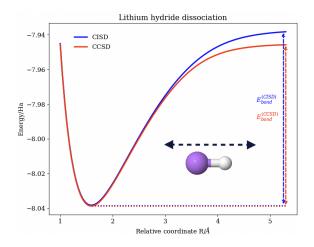
We will face the following integral evaluation:

$$v_{p,q,r,s} = \int_{X \times X} \frac{\xi_p^*(x_1)\xi_q(x_1)\xi_r^*(x_2)\xi_s(x_2)}{|r_1 - r_2|} d\lambda(x) d\lambda(x),$$



Size consistency and the coupled cluster ansatz

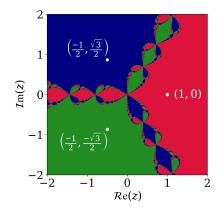
What do we really care about?



Truncating the coupled cluster ansatz and its working equations

$$\begin{split} & \mathsf{E}(\mathsf{e}) = (\varphi_0, H\varphi_0) + \sum_{IA} I_{IA} I_I^A + \frac{1}{4} \sum_{IJAB} (JJJAB) I_I^A J_I^A + \frac{1}{2} \sum_{IJAB} (JJJAB) I_I^A I_I^A, \\ & I(\mathsf{J})_I^A = I_{IA} + \sum_G I_A \mathsf{c} I_I^G - \sum_{K} I_{II} I_K^A + \sum_{K \subset K} (K \mathsf{A} || CI) I_K^{K} - \sum_{K \subset I} I_{K \subset I} I_K^K \\ & + \frac{1}{2} \sum_{K \subset G} (K \mathsf{A} || CD) I_K^{KD} - \frac{1}{2} \sum_{K \subset G} (K \mathsf{A} || CI) I_K^{K} - \sum_{K \subset G} I_{K \subset I} I_K^G I_K^K \\ & + \sum_{K \subset G} (K \mathsf{A} || CD) I_K^{KD} - \frac{1}{2} \sum_{K \subset G} (K \mathsf{A} || CD) I_K^{K} +$$

Finding one root to the coupled cluster equations



Finding all roots to the coupled cluster equations

Seeking:

$$f(\mathbf{t}) = \begin{bmatrix} f_1(\mathbf{t}) \\ \vdots \\ f_m(\mathbf{t}) \end{bmatrix} = \begin{bmatrix} f_1(t_1, \dots, t_m) \\ \vdots \\ f_m(t_1, \dots, t_m) \end{bmatrix} = \mathbf{0}.$$

Find a start system g, and then continuously deform g into f

Davidenko differential equation:

$$rac{\partial}{\partial \mathrm{t}} H(\mathrm{t},\lambda) \left(rac{\mathrm{d}}{\mathrm{d}\lambda} \mathrm{t}(\lambda)
ight) + rac{\partial}{\partial \lambda} H(\mathrm{t},\lambda) = 0, \quad \mathrm{t}(1) = \mathrm{s}_0,$$

Finding all roots to the coupled cluster equations Seeking:

$$f(t) = \begin{bmatrix} f_1(t) \\ \vdots \\ f_m(t) \end{bmatrix} = \begin{bmatrix} f_1(t_1, \dots, t_m) \\ \vdots \\ f_m(t_1, \dots, t_m) \end{bmatrix} = 0.$$

