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What are quantum simulations?
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Towards a mathematical formulation

Absorbtion of Hydrogen atom

Two energetic contributions:
1
1. Kinetic energy: hyg, = _EA

1

2. Coulomb energy: Viou = _m
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Birth of quantum chemistry?: Ay + F(E"' ":) =0

?Schrédinger, Annalen der physik (1926)



Schrodinger equation

The goal is to solve
HV = EV,

where
1N N Nou
=32 ZZ +ZZ,_,
= =1 1’ ,1>|’ il

and W is a function defined on R3N for N electrons.

r; position of the ith electron
R;, Z; position (fixed) and charge of the jth nucleus

O O



What is the problem?

Discretization scales exponentially in the number of electrons N

1The estimated number of particles in the universe is ~ 10%°
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What is the problem?

Discretization scales exponentially in the number of electrons N

Example: carbon dioxide (CO3) q

Oxygen has 8 electrons
Carbon has 6 electrons
In total: N=2%8-+6 =22

Naive grid with 10 points per axis yields 103?22 = 10°¢ grid points?

= Approximation is key!

1The estimated number of particles in the universe is ~ 10%°



Quantum chemical methods

Chemical
Accuracy




Strongly correlated quantum chemistry



Strongly correlated quantum chemistry

This happens at various scales
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Strongly correlated quantum chemistry

This happens at various scales

eH LA
(H) o

Small molecules Transition metal Twisted bilayer
complexes graphene
Strongly correlated systems are very difficult to compute
Important failure modes for existing methods

= The research frontier of computational chemistry lies in strongly
correlated systems
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Quantum mechanics of the hydrogen atom

Analytic solution to the eigenvalue problem

(384 (25 ) i) = £

3D partial differential equation!

¥)= coso Y3 = 3cos?e

0_
Yo=1

Y3=5c05°6-3c056 Y }=(5cos’6-1)sin6 cosg




The hydrogen molecule and the Hartree-Fock method

The Hamiltonian reads

1 1 1 1
H=—2A, — A, -
2 n |I’1 R1| 2 2 ‘rg—R2|
1 1 n 1
ln—FRi| [n—R| [n—nr

we want to solve
H\Il(rl, r2) = E\U(I’l, r2)

= Not possible!

g 3 Destabilization due
B ¢ 0 antibonding

Stabilization due
to bondi



Second quantization I:

Fock space, creation and annihiliation operators, CAR algebra

High-dimensional PDE's are hard!
e Can we think of matrices instead?
e Can we manipulate these matrices fast?

Second Quantization

COME ON, IT;SNOT,ROCKET

WH'
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Second quantization Il:
Excitation operators, CCR algebra, nilpotent Lie algebra

The second quantization shows its teeth




Second quantization IlI:

Slater-Condon rules, Wick's theorem, Hartree-Fock revisited

Let's bring out the big guns...

(Wick’ed guys)



The linear combination of atomic orbitals ansatz

Atomic orbitals

*Z‘\'—x
Molecular orbitals
Q¢ ) ‘




Gaussian-type atomic orbitals and high-dimensional
integration

We will face the following integral evaluation:

Vpqiris = /X » $p1)a ()67 (X2)§S(X2)d>\(x)d)\(x),

| — |




Size consistency and the coupled cluster ansatz

What do we really care about?
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Lithium hydride dissociation
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Truncating the coupled cluster ansatz and its working
equations
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Finding one root to the coupled cluster equations




Finding all roots to the coupled cluster equations

Seeking:

f(t) f(tL, ..., tm)
=1 : |= ; = 0.
fm(t) fm(t1, ..y tm)

Find a start system g, and then continuously deform g into f

Davidenko differential equation:

gtH(t, A) (dd/\t()\)> + (;;H(t, A) =0, t(1)=so,



Finding all roots to the coupled cluster equations

Seeking:

f(t) fi(t1, ..., tm)
f)=| : |= 5 =0
fin(t) fin(t1, -..s tm)




