The hydrogen molecule and the Hartree-Fock method

Ben Freiman
RPI
01/23/2024

Outline

- Review
- Stern-Gerlach
- Pauli Matricies
- Spin $1 / 2$ Particles
- H_{2}^{+}
- Identical Particles
- H_{2} (Two Spin $1 / 2$ Particles)
- Hartree Fock

Stern-Gerlach

- Hot Silver atoms in an oven
- Heating causes the silver to loose a valence electron and have a magnetic moment $\mu \in \mathbb{R}$
- Homogeneous magnetic field in the z-direction

- What pattern do we expect to see on the screen?

Stern-Gerlach Results

(a) Classical prediction

(b) Experiment

Stern-Gerlach Results Part 2

- Create a filter using this magnet, block one channel (either up or down).
- Feed in $|+z\rangle$ and get out $|+z\rangle$ and $|-z\rangle$ states!

(b)

Spin $1 / 2$ States

- Quantum Mechanics-the branch of mechanics that deals with the mathematical description of the motion and interaction of subatomic particles, incorporating the concepts of quantization of energy, wave-particle duality, the uncertainty principle, and the correspondence principle.-
- The spin $1 / 2$ particle is a 2D vector on a hilbert space \mathcal{H} isomorphic to \mathbb{C}^{2}

$$
\begin{gathered}
|\psi\rangle=c_{1}|+z\rangle+c_{2}|-z\rangle \\
|\psi\rangle=c_{1}|\uparrow\rangle+c_{2}|\downarrow\rangle
\end{gathered}
$$

- Dot product: $\langle+z \mid+z\rangle=\langle-z \mid-z\rangle=1,\langle+z \mid-z\rangle=0$
- $|\psi\rangle=\sum_{i=1}^{n} c_{i}|\varphi\rangle, c_{i} \in \mathbb{C}$
- $\left|c_{i}\right|^{2}$ is the probability of being in the state $\left|\psi_{i}\right\rangle$

Bloch Sphere

Spin Operators

- $\hat{A}|\varphi\rangle=a|\varphi\rangle$, where a is an observable/measurable quantity
- Expectation Value of $\langle\hat{A}\rangle=\langle\psi| \hat{A}|\psi\rangle=\sum_{i=1}^{n} a_{i}\left|c_{i}\right|^{2}$
- Pauli Matrices(Spin Operators):
- Common state vectors $| \pm z\rangle,| \pm x\rangle,| \pm y\rangle$ have corresponding observable values $\pm \frac{\hbar}{2}$ or ± 1 depicted below
- In the z-basis, these can be represented as:

$$
\begin{aligned}
\sigma_{x} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\sigma_{y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\sigma_{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Rotations

- Why are the spin operators called the generators of rotations?
- $R(d \phi \hat{k})=1+\frac{i}{\hbar} S_{z} d \phi$
-d $d \rightarrow \lim _{N \rightarrow \infty}$
- Illegal notation $R(\phi \hat{k})=\lim _{N \rightarrow \infty}\left[1-\frac{i}{\hbar} S_{z}\left(\frac{\phi}{N}\right)\right]^{N}=e^{-i \hat{S}_{z} \phi / \hbar}$
- Expand the exponential:

$$
\hat{R}(\phi \hat{k})|+z\rangle=\left[1-\frac{i \phi S_{z}}{\hbar}+\frac{1}{2!}\left(-\frac{i \phi S_{z}}{\hbar}\right)+\ldots\right]|+z\rangle
$$

Geometrical Approach to a New Basis

- $\hat{R}\left(\frac{\pi}{2} \hat{j}\right)|+z\rangle=|-x\rangle$
- $|+x\rangle=\frac{1}{\sqrt{2}}(|+z\rangle+|-z\rangle)$
$-|+y\rangle=\frac{1}{\sqrt{2}}(|+z\rangle+i|-z\rangle)$

The Hydrogen Atom Revisited

- $E_{n}=-\frac{1}{2(k+l)^{2}}$ where $n=k+l$
- Let $0<I<n$ and $-I \leq m \leq I$ where $\mathrm{n}=1,2,3 \ldots$
- We find that the lowest energy eigenvalue corresponds to $n=1, l=0, m=0$ with energy $E_{0}=-\frac{1}{2}$
- Referring to last lecture, we know that

$$
\left.V(r)\right|_{I=0}=\left.\lim _{r \rightarrow \infty} \frac{(I+1)}{2 r^{2}}\right|_{I=0}-\frac{1}{r}=1-\frac{1}{r}
$$

- The eigenvalue problem now becomes:

$$
-\frac{1}{2} \frac{\partial^{2} u}{\partial r^{2}}+\left(1-\frac{1}{r}\right) u=E u
$$

- Using $u(r)=r e^{-r}$:

$$
\begin{array}{r}
\frac{1}{2} e^{-r}-e^{-r} r+r e^{-r}-\frac{1}{r} r e^{-r} *=-\frac{1}{2} r e^{-r} \\
0=0 \tag{2}
\end{array}
$$

- We will call this the first spherical harmonic:

$$
\psi_{1,0,0}(\vec{r})=\sqrt{\frac{1}{4 \pi}} e^{-r}
$$

- What can we determine from the picture?
- How many spin states do we need to describe this system?
- How many orbitals?

Hydrogen molecular ion H_{2}^{+}with clamped nuclei A and B, internuclear distance R and plane of symmetry M.

Ansatz for Spatial Component of Wavefunction of H_{2}^{+}

- The original Hamiltonian for $\mathrm{H}: \hat{H}=-\frac{1}{2} \nabla_{r}-\frac{1}{r}$
- The new Hamiltonian for $H_{2}^{+}: \hat{H}=-\frac{1}{2} \nabla_{r}-\frac{1}{|\vec{r}|}-\frac{1}{|\vec{r}-\vec{R}|}$
- Approximate the wavefunction as a linear combination of the 1s orbitals:

$$
\psi(\vec{r}) \approx c_{1} \psi_{1,0,0}+c_{2} \psi_{1,0,0}(\vec{r}-\vec{R})
$$

- Since the vector $\operatorname{span}\left\{\psi_{1,0,0}(\vec{r}), \psi_{1,0,0}(\vec{r}-\vec{R})\right\}$ is isomorphic to \mathbb{C}^{2}, the hamiltonian can be approximated by a 2×2 matrix and solved with a Galerkin projection:

Galerkin Projection Continued

$$
\begin{gathered}
H \psi=E \psi \\
\varepsilon=\int \psi_{100}(\vec{r})\left(H \psi_{100}(\vec{r})\right) d \vec{r} \\
-t=\int \psi_{100}(\vec{r})\left(H \psi_{100}(\vec{r}-\vec{R})\right) d \vec{r} \\
s=\int \psi_{100}(\vec{r}) \psi_{100}(\vec{r}-\vec{R}) d \vec{r}
\end{gathered}
$$

- Using the Galerkin projection, we can write the generalized eigenvalue problem as:

$$
\left(\begin{array}{cc}
\varepsilon & -t \tag{3}\\
-t & \varepsilon
\end{array}\right)\binom{c_{1}}{c_{2}}=E\left(\begin{array}{cc}
1 & s \\
s & 1
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

- One finds that the eigenenergies are: $E_{0}=\frac{\varepsilon-t}{1+s}$ and $E_{e}=\frac{\varepsilon+t}{1-s}$ with corresponding eigenvectors: $\vec{c}_{0}=\frac{1}{\sqrt{2(1+s)}}\binom{1}{1}$ and

$$
\vec{c}_{e}=\frac{1}{\sqrt{2(1-s)}}\binom{1}{-1}
$$

Identical Particles

- wavefunction has spatial and spin components,

$$
\Psi\left(x_{1}, x_{2}\right) \equiv \Psi\left(\left(r_{1}, \sigma_{1}\right),\left(r_{2}, \sigma_{2}\right)\right)
$$

- The wavefunction for electrons is fermionic and is in the space

The wavefunction $|\Psi\rangle$ for electrons is always a fermionic state and is in the space $\mathcal{A}_{2}=$ $\bigwedge^{2} L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right)$, which consists of all anti-symmetric functions in the tensor product space $L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right) \otimes L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right)$.

- Because the Hamiltonian doesn't depend on spin, we have $\left[\left(S^{\text {tot }}\right)^{2}, H\right]=0$ and $\left[\left(S_{z}^{\text {tot }}\right), H\right]$
- We can separate spin and spatial degrees of freedom
- Additionally, if we have a triplet state, the spatial part of the wavefunction must be anti-symmetric

$$
\varphi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{1}\right)-\phi_{1}\left(\vec{r}_{2}\right) \phi_{2}\left(\vec{r}_{1}\right)\right)
$$

H_{2} Molecule

- What do we need to account for the extra electron?

$$
\text { Covalent bond - } \mathrm{H}_{2}
$$

Two Spin 1/2 Particles

- Spin basis states for a system of one spin $\frac{1}{2}$ particles
- $|+z\rangle,|-z\rangle$

- Spin basis states for a system of two spin $\frac{1}{2}$ particles $|+z,+z\rangle,|+z,-z\rangle,|-z,+z\rangle,|-z,-z\rangle$ - $|+z,-z\rangle$

Two Spin 1/2 Particles Generators of Rotation

- Angular Momentum Operators: $\hat{S_{1}}=\hat{S_{1 x}}+\hat{S_{1 y}}+\hat{S_{1 z}}$
- Angular Momentum : $\left[\hat{S}_{1}, \hat{S}_{2}\right]=0$
- As Tim touched upon, the eigenfunctions collapse to an eigenstate upon measurement.
- If $+z$ is measured for the first particle, we can label $S_{1 z}=\frac{\hbar}{2}$.
- If $-z$ is measured for the second particle, we can label $S_{2 z}=-\frac{\hbar}{2}$.

Two Spin 1/2 Particles Generators of Rotation

- This state we just discussed is represented as $|+z,-z\rangle=|+z\rangle_{1} \otimes|-z\rangle_{2}$
- Number of spin states for spin $1 / 2$ particles $N=2^{n}$ where n is the number of particles.
- Total Z-Spin is $S_{z}=-\frac{\hbar^{2}}{2^{2}}$

H_{2} Molecule

- The Geometry of our Stystem: H_{2}

- Both electrons occupy the 1 s orbital
- Spatial wavefunctions:

$$
\begin{aligned}
& \phi_{1}(\vec{r})=\frac{1}{\sqrt{2(1+s)}}\left[\psi_{100}\left(\vec{r}_{A 1}\right)+\psi_{100}\left(\vec{r}_{B 2}\right)\right] \\
& \phi_{2}(\vec{r})=\frac{1}{\sqrt{2(1-s)}}\left[\psi_{100}\left(\vec{r}_{A}\right)-\psi_{100}\left(\vec{r}_{B 2}\right)\right]
\end{aligned}
$$

Ground State Antibonding and Bonding

$\mathrm{H}_{\text {A }}$
H_{B}

Ground State Antibonding and Bonding

Ground State Antibonding and Bonding

N-particles

- $\Psi\left(x_{1}, \ldots, n\right) \in \otimes^{N} L^{2}\left(\mathcal{R}^{3} ; \mathcal{C}^{2}\right)$
- Permutation Operator- the operator that exchanges particles eigenvalues have to be ± 1
- $P(i, j) \Psi_{F}\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots x_{N}\right)=\Psi_{F}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots x_{N}\right)$
- The symmetric group has N ! permutations $C_{F} \sum_{\pi \in \operatorname{Sym}(N)}(-1)^{\pi} \psi_{\pi(1)}\left(x_{1}\right) \psi_{\pi(2)}\left(x_{2}\right) \ldots \psi_{\pi(N)}\left(x_{N}\right)$
- $(-1)^{\pi}= \begin{cases}1 & \pi(\text { even }) \\ -1 & \pi(\text { odd })\end{cases}$
- Simplest for $\mathrm{N}=2$

$$
\mathcal{A}_{N}:=\bigwedge^{N} L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right) \subset \bigotimes^{N} L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right)
$$

Slater Determinant

- rows \rightarrow electrons
- columns \rightarrow spin orbitals
- The Slater determinant is given by:

$$
\Psi(1,2, \ldots, N)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\chi_{1}(1) & \chi_{2}(1) & \cdots & \chi_{N}(1) \\
\chi_{1}(2) & \chi_{2}(2) & \cdots & \chi_{N}(2) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_{1}(N) & \chi_{2}(N) & \cdots & \chi_{N}(N)
\end{array}\right|
$$

Hartree-Fock Theory

- Hartree-Fock takes \mathcal{A}_{N} and assumes that the wavefunction is a single Slater determinant
- Variational Principle (Rayleigh-Ritz Method) where $E_{\psi}=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}$
- $\frac{\partial E_{\psi}}{\partial \psi}\left[\psi_{*}\right]=0$
- This becomes a minimization problem: $E_{H F}=\min _{\psi \in \mathcal{A}_{N}^{0},\langle\psi \mid \psi\rangle=1}\langle\Psi| H|\Psi\rangle$, where \mathcal{A}_{N}^{0} is the set of all Slater determinants for N electrons

Hartree-Fock on the Molecular Hamiltonian

$$
H=\sum_{i=1}^{N}-\frac{1}{2} \Delta_{r_{i}}-\sum_{i=1}^{N} \frac{Z_{i}}{\left|r_{j}-R_{j}\right|}+\sum_{i<j}^{N} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

- The scaling of hartree fock

$$
\begin{array}{r}
\langle\Psi| \sum_{i=1}^{N}\left(-\frac{1}{2} \nabla_{r_{i}}+V_{e x t}\left(r_{i}\right)\right)|\Psi\rangle=N\langle\Psi|-\frac{1}{2} \nabla_{r_{1}}+V_{e x t}\left(r_{1}\right)|\Psi\rangle \\
\langle\Psi| \sum_{i<j} \frac{1}{\left|r_{i}-r_{j}\right|}|\Psi\rangle=\binom{N}{2}\langle\Psi| \frac{1}{\left|r_{1}-r_{2}\right|}|\Psi\rangle \tag{5}
\end{array}
$$

Hartree Fock Continued

- There is only one interacting term with the Hamiltonian in the computation

$$
\begin{aligned}
&\langle\Psi|- \\
&=\frac{1}{2} \Delta_{r_{1}}+V_{\mathrm{ext}}\left(\boldsymbol{r}_{1}\right)|\Psi\rangle \\
&=\frac{1}{N!} \sum_{\pi, \pi^{\prime}}(-1)^{\pi}(-1)^{\pi^{\prime}}\left\langle\psi_{\pi(1)}\left(\boldsymbol{x}_{1}\right)\right|-\frac{1}{2} \Delta_{\boldsymbol{r}_{1}}+V_{\mathrm{ext}}\left(\boldsymbol{r}_{1}\right)\left|\psi_{\pi^{\prime}(1)}\left(\boldsymbol{x}_{1}\right)\right\rangle_{\boldsymbol{x}_{1}} \\
& \quad \times \prod_{k=2}^{N}\left\langle\psi_{\pi(k)}\left(\boldsymbol{x}_{k}\right) \mid \psi_{\pi^{\prime}(k)}\left(\boldsymbol{x}_{k}\right)\right\rangle_{\boldsymbol{x}_{k}} \\
&=\frac{1}{N!} \sum_{\pi, \pi^{\prime}}(-1)^{\pi}(-1)^{\pi^{\prime}}\left\langle\psi_{\pi(1)}\left(\boldsymbol{x}_{1}\right)\right|-\frac{1}{2} \Delta_{\boldsymbol{r}_{1}}+V_{\mathrm{ext}}\left(\boldsymbol{r}_{1}\right)\left|\psi_{\pi^{\prime}(1)}\left(\boldsymbol{x}_{1}\right)\right\rangle_{\boldsymbol{x}_{1}} \prod_{k=2}^{N} \delta_{\pi(k) \pi^{\prime}(k}
\end{aligned}
$$

- The contribution of this term is zero unless $\pi(k)=\pi^{\prime}(k)$
- Therefore: $\langle\Psi| 1_{\text {body }}|\Psi\rangle=\frac{1}{N} \sum_{i=1}^{N}\left\langle\psi_{i}\right|-\frac{1}{2} \nabla+V_{\text {ext }}\left|\psi_{i}\right\rangle$

Two Body Term

$$
\begin{aligned}
& \quad\langle\Psi| \frac{1}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}|\Psi\rangle \\
& =\frac{1}{N!} \sum_{\pi, \pi^{\prime}}(-1)^{\pi}(-1)^{\pi^{\prime}}\left\langle\psi_{\pi(1)}\left(\boldsymbol{x}_{1}\right) \psi_{\pi(2)}\left(\boldsymbol{x}_{2}\right)\right| \frac{1}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}\left|\psi_{\pi^{\prime}(1)}\left(\boldsymbol{x}_{1}\right) \psi_{\pi^{\prime}(2)}\left(\boldsymbol{x}_{2}\right)\right\rangle_{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}} \\
& \quad \times \prod_{k=3}^{N}\left\langle\psi_{\pi(k)}\left(\boldsymbol{x}_{k}\right) \mid \psi_{\pi^{\prime}(k)}\left(\boldsymbol{x}_{k}\right)\right\rangle_{\boldsymbol{x}_{k}} \\
& =\frac{1}{N!} \sum_{\pi, \pi^{\prime}}(-1)^{\pi}(-1)^{\pi^{\prime}}\left\langle\psi_{\pi(1)}(\boldsymbol{x}) \psi_{\pi(2)}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{\pi^{\prime}(1)}(\boldsymbol{x}) \psi_{\pi^{\prime}(2)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle_{\boldsymbol{x}, \boldsymbol{x}^{\prime}} \\
& \quad \times \prod_{k=3}^{N} \delta_{\pi(k) \pi^{\prime}(k)}
\end{aligned}
$$

We will see that when $\pi(1)=\pi^{\prime}(1)$ we get $(-1)(-1)=1$ and when $\pi(1)=\pi^{\prime}(2)$ we obtain $(-1)(1)=1$. The two permutations when this term is non-zero are when:

$$
\begin{array}{ll}
\pi(1)=\pi^{\prime}(1)=i, & \pi(2)=\pi^{\prime}(2)=j \\
\pi(1)=\pi^{\prime}(2)=i, & \pi(2)=\pi^{\prime}(1)=j
\end{array}
$$

Simplifying 2-body term

$$
\begin{aligned}
& \langle\Psi| \sum_{i<j} \frac{1}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|}|\Psi\rangle \\
= & \frac{1}{2} \sum_{i \neq j}^{N}\left(\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right\rangle-\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{j}(\boldsymbol{x}) \psi_{i}\left(\boldsymbol{x}^{\prime}\right)\right\rangle\right) \\
= & \frac{1}{2} \sum_{i, j}^{N}\left(\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right\rangle-\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{j}(\boldsymbol{x}) \psi_{i}\left(\boldsymbol{x}^{\prime}\right)\right\rangle\right) .
\end{aligned}
$$

Hartree Fock Energy Functional

$$
\begin{aligned}
& \langle\Psi| \sum_{i<j} \frac{1}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|}|\Psi\rangle \\
= & \frac{1}{2} \sum_{i \neq j}^{N}\left(\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right\rangle-\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{j}(\boldsymbol{x}) \psi_{i}\left(\boldsymbol{x}^{\prime}\right)\right\rangle\right) \\
= & \frac{1}{2} \sum_{i, j}^{N}\left(\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right\rangle-\left\langle\psi_{i}(\boldsymbol{x}) \psi_{j}\left(\boldsymbol{x}^{\prime}\right)\right| \frac{1}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\left|\psi_{j}(\boldsymbol{x}) \psi_{i}\left(\boldsymbol{x}^{\prime}\right)\right\rangle\right) .
\end{aligned}
$$

