# The hydrogen molecule and the Hartree-Fock method

Ben Freiman

RPI

01/23/2024

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

## Outline

#### Review

- Stern-Gerlach
- Pauli Matricies
- Spin 1/2 Particles
- $H_2^+$
- Identical Particles
- ► H<sub>2</sub> (Two Spin 1/2 Particles)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hartree Fock

## Stern-Gerlach

- Hot Silver atoms in an oven
- Heating causes the silver to loose a valence electron and have a magnetic moment  $\mu \in \mathbb{R}$
- Homogeneous magnetic field in the z-direction



What pattern do we expect to see on the screen?

## Stern-Gerlach Results



#### (a) Classical prediction

(b) Experiment

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Stern-Gerlach Results Part 2

- Create a filter using this magnet, block one channel (either up or down).
- Feed in  $|+z\rangle$  and get out  $|+z\rangle$  and  $|-z\rangle$  states!







▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Spin 1/2 States

Quantum Mechanics-the branch of mechanics that deals with the mathematical description of the motion and interaction of subatomic particles, incorporating the concepts of **quantization of energy**, wave-particle duality, the uncertainty principle, and the correspondence principle.-

The spin 1/2 particle is a 2D vector on a hilbert space H isomorphic to C<sup>2</sup>

$$\begin{aligned} |\psi\rangle &= c_1 \left| +z \right\rangle + c_2 \left| -z \right\rangle \\ |\psi\rangle &= c_1 \left| \uparrow \right\rangle + c_2 \left| \downarrow \right\rangle \end{aligned}$$

Dot product: (+z| + z) = (-z| - z) = 1, (+z| - z) = 0
|ψ⟩ = ∑<sub>i=1</sub><sup>n</sup> c<sub>i</sub> |φ⟩, c<sub>i</sub> ∈ C
|c<sub>i</sub>|<sup>2</sup> is the probability of being in the state |ψ<sub>i</sub>⟩

# Bloch Sphere



シック 単 (中本)(中本)(日)(日)

## Spin Operators

- $\hat{A} \ket{\varphi} = a \ket{\varphi}$ , where a is an observable/measurable quantity
- Expectation Value of  $\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle = \sum_{i=1}^{n} a_i |c_i|^2$
- Pauli Matrices(Spin Operators):
  - Common state vectors |±z>, |±x>, |±y> have corresponding observable values ±<sup>ħ</sup>/<sub>2</sub> or ±1 depicted below
  - In the z-basis, these can be represented as:

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Rotations

- Why are the spin operators called the generators of rotations?
   R(dφk̂) = 1 + i/ħ S<sub>z</sub>dφ
   dφ → lim<sub>N→∞</sub>
   Illegal notation R(φk̂) = lim<sub>N→∞</sub> [1 i/ħ S<sub>z</sub>(φ/ħ)]<sup>N</sup> = e<sup>-iŜ<sub>z</sub>φ/ħ</sup>
  - Expand the exponential:  $\hat{R}(\phi \hat{k}) |+z\rangle = [1 - \frac{i\phi S_z}{\hbar} + \frac{1}{2!}(-\frac{i\phi S_z}{\hbar}) + ...] |+z\rangle$

## Geometrical Approach to a New Basis

 $\blacktriangleright \hat{R}(\frac{\pi}{2}\hat{j})|+z\rangle = |-x\rangle$  $\blacktriangleright |+x\rangle = \frac{1}{\sqrt{2}}(|+z\rangle + |-z\rangle)$  $|+y\rangle = \frac{1}{\sqrt{2}}(|+z\rangle + i |-z\rangle)$ 



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## The Hydrogen Atom Revisited

$$E_n = -\frac{1}{2(k+l)^2} \text{ where } n = k+l$$

$$\text{Let } 0 < l < n \text{ and } -l \leq m \leq l \text{ where } n = 1,2,3...$$

$$\text{We find that the lowest energy eigenvalue corresponds to } n = 1, l = 0, m = 0 \text{ with energy } E_0 = -\frac{1}{2}$$

$$\text{Referring to last lecture, we know that } V(r)|_{l=0} = \lim_{r \to \infty} \frac{l(l+1)}{2r^2}|_{l=0} - \frac{1}{r} = 1 - \frac{1}{r}$$

$$\text{The eigenvalue problem now becomes:} -\frac{1}{2}\frac{\partial^2 u}{\partial r^2} + (1 - \frac{1}{r})u = Eu$$

$$\text{Using } u(r) = re^{-r}:$$

$$\frac{1}{2}e^{-r} - e^{-r}r + re^{-r} - \frac{1}{r}re^{-r} * = -\frac{1}{2}re^{-r} \qquad (1)$$

$$0 = 0 \qquad (2)$$

▶ We will call this the first spherical harmonic:

$$\psi_{1,0,0}(\vec{r}) = \sqrt{\frac{1}{4\pi}} e^{-r}$$

# $H_{2}^{+}$

- What can we determine from the picture?
- How many spin states do we need to describe this system?
- How many orbitals?





## Ansatz for Spatial Component of Wavefunction of $H_2^+$

- The original Hamiltonian for H:  $\hat{H} = -\frac{1}{2}\nabla_r \frac{1}{r}$
- ▶ The new Hamiltonian for  $H_2^+$ :  $\hat{H} = -\frac{1}{2}\nabla_r \frac{1}{|\vec{r}|} \frac{1}{|\vec{r}-\vec{R}|}$
- Approximate the wavefunction as a linear combination of the 1s orbitals:

$$\psi(\vec{r}) \approx c_1 \psi_{1,0,0} + c_2 \psi_{1,0,0}(\vec{r} - \vec{R})$$

Since the vector span { ψ<sub>1,0,0</sub>(r̄), ψ<sub>1,0,0</sub>(r̄ − R̄) } is isomorphic to C<sup>2</sup>, the hamiltonian can be approximated by a 2 × 2 matrix and solved with a Galerkin projection:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Galerkin Projection Continued

$$H\psi = E\psi$$
  

$$\varepsilon = \int \psi_{100}(\vec{r})(H\psi_{100}(\vec{r}))d\vec{r}$$
  

$$-t = \int \psi_{100}(\vec{r})(H\psi_{100}(\vec{r} - \vec{R}))d\vec{r}$$
  

$$s = \int \psi_{100}(\vec{r})\psi_{100}(\vec{r} - \vec{R})d\vec{r}$$

Using the Galerkin projection, we can write the generalized eigenvalue problem as:

$$\begin{pmatrix} \varepsilon & -t \\ -t & \varepsilon \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = E \begin{pmatrix} 1 & s \\ s & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
(3)

• One finds that the eigenenergies are:  $E_0 = \frac{\varepsilon - t}{1 + s}$  and  $E_e = \frac{\varepsilon + t}{1 - s}$ with corresponding eigenvectors:  $\vec{c}_0 = \frac{1}{\sqrt{2(1+s)}} \begin{pmatrix} 1\\1 \end{pmatrix}$  and  $\vec{c}_e = \frac{1}{\sqrt{2(1-s)}} \begin{pmatrix} 1\\-1 \end{pmatrix}$ 

## **Identical Particles**

- wavefunction has spatial and spin components,  $\Psi(x_1, x_2) \equiv \Psi((r_1, \sigma_1), (r_2, \sigma_2))$
- The wavefunction for electrons is fermionic and is in the space

The wavefunction  $|\Psi\rangle$  for electrons is always a fermionic state and is in the space  $\mathcal{A}_2 = \bigwedge^2 L^2(\mathbb{R}^3; \mathbb{C}^2)$ , which consists of all anti-symmetric functions in the tensor product space  $L^2(\mathbb{R}^3; \mathbb{C}^2) \otimes L^2(\mathbb{R}^3; \mathbb{C}^2)$ .

- Because the Hamiltonian doesn't depend on spin, we have  $[(S^{tot})^2, H] = 0$  and  $[(S_z^{tot}), H]$
- We can separate spin and spatial degrees of freedom
- Additionally, if we have a triplet state, the spatial part of the wavefunction must be anti-symmetric

$$\varphi(\vec{r_1}, \vec{r_2}) = \frac{1}{\sqrt{2}} (\phi_1(\vec{r_1})\phi_2(\vec{r_1}) - \phi_1(\vec{r_2})\phi_2(\vec{r_1}))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## *H*<sub>2</sub> Molecule

What do we need to account for the extra electron?
Covalent bond – H2



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Two Spin 1/2 Particles

• Spin basis states for a system of one spin  $\frac{1}{2}$  particles



Spin basis states for a system of two spin <sup>1</sup>/<sub>2</sub> particles |+z, +z⟩, |+z, -z⟩, |-z, +z⟩, |-z, -z⟩
 |+z, -z⟩

イロト イボト イヨト イヨト 三日



## Two Spin 1/2 Particles Generators of Rotation

• Angular Momentum Operators:  $\hat{S_1} = \hat{S_{1x}} + \hat{S_{1y}} + \hat{S_{1z}}$ 

• Angular Momentum :  $[\hat{S}_1, \hat{S}_2] = 0$ 

- As Tim touched upon, the eigenfunctions collapse to an eigenstate upon measurement.
  - If +z is measured for the first particle, we can label S<sub>1z</sub> = <sup>ħ</sup>/<sub>2</sub>.
     If -z is measured for the second particle, we can label S<sub>2z</sub> = -<sup>ħ</sup>/<sub>2</sub>.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Two Spin 1/2 Particles Generators of Rotation

- This state we just discussed is represented as  $|+z, -z\rangle = |+z\rangle_1 \otimes |-z\rangle_2$ 
  - Number of spin states for spin 1/2 particles N = 2<sup>n</sup> where n is the number of particles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Total Z-Spin is 
$$S_z = -\frac{\hbar^2}{2^2}$$

## $H_2$ Molecule

► The Geometry of our Stystem:



- Both electrons occupy the 1s orbital
- Spatial wavefunctions:

$$\phi_1(\vec{r}) = \frac{1}{\sqrt{2(1+s)}} [\psi_{100}(\vec{r}_{A1}) + \psi_{100}(\vec{r}_{B2})]$$
  
$$\phi_2(\vec{r}) = \frac{1}{\sqrt{2(1-s)}} [\psi_{100}(\vec{r}_A) - \psi_{100}(\vec{r}_{B2})]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Ground State Antibonding and Bonding





æ

(日)

## Ground State Antibonding and Bonding



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Ground State Antibonding and Bonding



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

## **N**-particles

$$\Psi(x_1,...,n) \in \otimes^N L^2(\mathcal{R}^3;\mathcal{C}^2)$$

Permutation Operator- the operator that exchanges particles eigenvalues have to be ±1

$$\blacktriangleright P(i,j)\Psi_F(x_1,...,x_i,...,x_j,...,x_N) = \Psi_F(x_1,...,x_j,...,x_i,...,x_N)$$

The symmetric group has N! permutations  $C_F \sum_{\pi \in Sym(N)} (-1)^{\pi} \psi_{\pi(1)}(x_1) \psi_{\pi(2)}(x_2) \dots \psi_{\pi(N)}(x_N)$   $(-1)^{\pi} = \begin{cases} 1 & \pi(even) \\ -1 & \pi(odd) \end{cases}$ 

Simplest for N = 2

$$\mathcal{A}_N := \bigwedge^N L^2(\mathbb{R}^3; \mathbb{C}^2) \subset \bigotimes^N L^2(\mathbb{R}^3; \mathbb{C}^2).$$

A D N A 目 N A E N A E N A B N A C N

## Slater Determinant

 $\blacktriangleright \text{ rows} \rightarrow \text{electrons}$ 

 $\blacktriangleright$  columns  $\rightarrow$  spin orbitals

The Slater determinant is given by:

$$\Psi(1, 2, ..., N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(1) & \chi_2(1) & \cdots & \chi_N(1) \\ \chi_1(2) & \chi_2(2) & \cdots & \chi_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(N) & \chi_2(N) & \cdots & \chi_N(N) \end{vmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Hartree-Fock Theory

- Hartree-Fock takes A<sub>N</sub> and assumes that the wavefunction is a single Slater determinant
- Variational Principle (Rayleigh-Ritz Method) where  $F_{\psi} = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | H | \psi \rangle}$

$$\psi = \frac{\psi}{\langle \psi | \psi \rangle}$$

$$\blacktriangleright \ \frac{\partial E_{\psi}}{\partial \psi}[\psi_*] = 0$$

• This becomes a minimization problem:

 $E_{HF} = \min_{\psi \in \mathcal{A}_N^0, \langle \psi | \psi \rangle = 1} \langle \Psi | H | \Psi \rangle$ , where  $\mathcal{A}_N^0$  is the set of all Slater determinants for N electrons

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Hartree-Fock on the Molecular Hamiltonian

$$H = \sum_{i=1}^{N} -\frac{1}{2}\Delta_{r_i} - \sum_{i=1}^{N} \frac{Z_i}{|r_j - R_j|} + \sum_{i < j}^{N} \frac{1}{|r_i - r_j|}$$

The scaling of hartree fock

$$\langle \Psi | \sum_{i=1}^{N} (-\frac{1}{2} \nabla_{r_i} + V_{ext}(r_i)) | \Psi \rangle = N \langle \Psi | -\frac{1}{2} \nabla_{r_1} + V_{ext}(r_1) | \Psi \rangle$$
(4)  
 
$$\langle \Psi | \sum_{i < j} \frac{1}{|r_i - r_j|} | \Psi \rangle = \binom{N}{2} \langle \Psi | \frac{1}{|r_1 - r_2|} | \Psi \rangle$$
(5)

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

## Hartree Fock Continued

There is only one interacting term with the Hamiltonian in the computation

$$\begin{split} \left\langle \Psi \right| &- \frac{1}{2} \Delta_{\boldsymbol{r}_{1}} + V_{\text{ext}}(\boldsymbol{r}_{1}) \Big| \Psi \right\rangle \\ = &\frac{1}{N!} \sum_{\pi,\pi'} (-1)^{\pi} (-1)^{\pi'} \left\langle \psi_{\pi(1)}(\boldsymbol{x}_{1}) \right| - \frac{1}{2} \Delta_{\boldsymbol{r}_{1}} + V_{\text{ext}}(\boldsymbol{r}_{1}) \Big| \psi_{\pi'(1)}(\boldsymbol{x}_{1}) \right\rangle_{\boldsymbol{x}_{1}} \\ &\times \prod_{k=2}^{N} \left\langle \psi_{\pi(k)}(\boldsymbol{x}_{k}) \middle| \psi_{\pi'(k)}(\boldsymbol{x}_{k}) \right\rangle_{\boldsymbol{x}_{k}} \\ = &\frac{1}{N!} \sum_{\pi,\pi'} (-1)^{\pi} (-1)^{\pi'} \left\langle \psi_{\pi(1)}(\boldsymbol{x}_{1}) \middle| - \frac{1}{2} \Delta_{\boldsymbol{r}_{1}} + V_{\text{ext}}(\boldsymbol{r}_{1}) \middle| \psi_{\pi'(1)}(\boldsymbol{x}_{1}) \right\rangle_{\boldsymbol{x}_{1}} \prod_{k=2}^{N} \delta_{\pi(k)\pi'(k)} \end{split}$$

The contribution of this term is zero unless π(k) = π'(k)
 Therefore: ⟨Ψ|1<sub>body</sub>|Ψ⟩ = <sup>1</sup>/<sub>N</sub> Σ<sup>N</sup><sub>i=1</sub> ⟨ψ<sub>i</sub>| - <sup>1</sup>/<sub>2</sub>∇ + V<sub>ext</sub>|ψ<sub>i</sub>⟩

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Two Body Term

$$\begin{split} \Big\langle \Psi \Big| \frac{1}{|\boldsymbol{r}_{1} - \boldsymbol{r}_{2}|} \Big| \Psi \Big\rangle \\ = & \frac{1}{N!} \sum_{\pi, \pi'} (-1)^{\pi} (-1)^{\pi'} \Big\langle \psi_{\pi(1)}(\boldsymbol{x}_{1}) \psi_{\pi(2)}(\boldsymbol{x}_{2}) \Big| \frac{1}{|\boldsymbol{r}_{1} - \boldsymbol{r}_{2}|} \Big| \psi_{\pi'(1)}(\boldsymbol{x}_{1}) \psi_{\pi'(2)}(\boldsymbol{x}_{2}) \Big\rangle_{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}} \\ & \times \prod_{k=3}^{N} \Big\langle \psi_{\pi(k)}(\boldsymbol{x}_{k}) \Big| \psi_{\pi'(k)}(\boldsymbol{x}_{k}) \Big\rangle_{\boldsymbol{x}_{k}} \\ = & \frac{1}{N!} \sum_{\pi, \pi'} (-1)^{\pi} (-1)^{\pi'} \Big\langle \psi_{\pi(1)}(\boldsymbol{x}) \psi_{\pi(2)}(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_{\pi'(1)}(\boldsymbol{x}) \psi_{\pi'(2)}(\boldsymbol{x}') \Big\rangle_{\boldsymbol{x}, \boldsymbol{x}'} \\ & \times \prod_{k=3}^{N} \delta_{\pi(k)\pi'(k)}. \end{split}$$

We will see that when  $\pi(1) = \pi'(1)$  we get (-1)(-1) = 1 and when  $\pi(1) = \pi'(2)$  we obtain (-1)(1) = 1. The two permutations when this term is non-zero are when:

$$\pi(1) = \pi'(1) = i, \quad \pi(2) = \pi'(2) = j$$

$$\pi(1) = \pi'(2) = i, \quad \pi(2) = \pi'(1) = j,$$

# Simplifying 2-body term

$$\begin{split} &\left\langle \Psi \Big| \sum_{i < j} \frac{1}{|\boldsymbol{r}_i - \boldsymbol{r}_j|} \Big| \Psi \right\rangle \\ = & \frac{1}{2} \sum_{i \neq j}^N \Biggl( \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \right\rangle - \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_j(\boldsymbol{x}) \psi_i(\boldsymbol{x}') \right\rangle \Biggr) \\ = & \frac{1}{2} \sum_{i,j}^N \Biggl( \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \right\rangle - \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_j(\boldsymbol{x}) \psi_i(\boldsymbol{x}') \right\rangle \Biggr). \end{split}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

## Hartree Fock Energy Functional

$$\begin{split} &\left\langle \Psi \Big| \sum_{i < j} \frac{1}{|\boldsymbol{r}_i - \boldsymbol{r}_j|} \Big| \Psi \right\rangle \\ = & \frac{1}{2} \sum_{i \neq j}^N \Biggl( \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \right\rangle - \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_j(\boldsymbol{x}) \psi_i(\boldsymbol{x}') \right\rangle \Biggr) \\ = & \frac{1}{2} \sum_{i,j}^N \Biggl( \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \right\rangle - \left\langle \psi_i(\boldsymbol{x}) \psi_j(\boldsymbol{x}') \Big| \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \Big| \psi_j(\boldsymbol{x}) \psi_i(\boldsymbol{x}') \right\rangle \Biggr). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●