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Stern-Gerlach

▶ Hot Silver atoms in an oven

▶ Heating causes the silver to loose a valence electron and have
a magnetic moment µ ∈ R

▶ Homogeneous magnetic field in the z-direction

▶ What pattern do we expect to see on the screen?



Stern-Gerlach Results



Stern-Gerlach Results Part 2

▶ Create a filter using this magnet, block one channel (either up
or down).

▶ Feed in |+z⟩ and get out |+z⟩ and |−z⟩ states!



Spin 1/2 States

▶ Quantum Mechanics-the branch of mechanics that deals with
the mathematical description of the motion and interaction of
subatomic particles, incorporating the concepts of
quantization of energy, wave-particle duality, the
uncertainty principle, and the correspondence principle.-

▶ The spin 1/2 particle is a 2D vector on a hilbert space H
isomorphic to C2

|ψ⟩ = c1 |+z⟩+ c2 |−z⟩
|ψ⟩ = c1 |↑⟩+ c2 |↓⟩

▶ Dot product: ⟨+z |+ z⟩ = ⟨−z | − z⟩ = 1, ⟨+z | − z⟩ = 0

▶ |ψ⟩ =
∑n

i=1 ci |φ⟩, ci ∈ C
▶ |ci |2 is the probability of being in the state |ψi ⟩



Bloch Sphere



Spin Operators

▶ Â |φ⟩ = a |φ⟩, where a is an observable/measurable quantity

▶ Expectation Value of ⟨Â⟩ = ⟨ψ|Â|ψ⟩ =
∑n

i=1 ai |ci |2
▶ Pauli Matrices(Spin Operators):

▶ Common state vectors |±z⟩ , |±x⟩ , |±y⟩ have corresponding
observable values ±ℏ

2 or ±1 depicted below
▶ In the z-basis, these can be represented as:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)



Rotations

▶ Why are the spin operators called the generators of rotations?
▶ R(dϕk̂) = 1 + i

ℏSzdϕ
▶ dϕ → lim

N→∞
▶ Illegal notation R(ϕk̂) = lim

N→∞
[1− i

ℏSz(
ϕ
N
)]N = e−i Ŝzϕ/ℏ

▶ Expand the exponential:
R̂(ϕk̂) |+z⟩ = [1− iϕSz

ℏ + 1
2!
(− iϕSz

ℏ ) + ...] |+z⟩



Geometrical Approach to a New Basis

▶ R̂(π2 ĵ) |+z⟩ = |−x⟩
▶ |+x⟩ = 1√

2
(|+z⟩+ |−z⟩)

▶ |+y⟩ = 1√
2
(|+z⟩+ i |−z⟩)



The Hydrogen Atom Revisited
▶ En = − 1

2(k+l)2
where n = k + l

▶ Let 0 < l < n and −l ≤ m ≤ l where n = 1,2,3...
▶ We find that the lowest energy eigenvalue corresponds to

n = 1, l = 0,m = 0 with energy E0 = −1
2

▶ Referring to last lecture, we know that
V (r)|l=0 = limr→∞

l(l+1)
2r2

|l=0 − 1
r = 1− 1

r
▶ The eigenvalue problem now becomes:

−1
2
∂2u
∂r2

+ (1− 1
r )u = Eu

▶ Using u(r) = re−r :

1

2
e−r − e−r r + re−r − 1

r
re−r∗ = −1

2
re−r (1)

0 = 0 (2)

▶ We will call this the first spherical harmonic:

ψ1,0,0(r⃗) =
√

1
4π e

−r



H+
2

▶ What can we determine from the picture?

▶ How many spin states do we need to describe this system?

▶ How many orbitals?



Ansatz for Spatial Component of Wavefunction of H+
2

▶ The original Hamiltonian for H: Ĥ = −1
2∇r − 1

r

▶ The new Hamiltonian for H+
2 : Ĥ = −1

2∇r − 1
|r⃗ | −

1
|r⃗−R⃗|

▶ Approximate the wavefunction as a linear combination of the
1s orbitals:

ψ(r⃗) ≈ c1ψ1,0,0 + c2ψ1,0,0(r⃗ − R⃗)

▶ Since the vector span{ψ1,0,0(r⃗), ψ1,0,0(r⃗ − R⃗)} is isomorphic
to C2, the hamiltonian can be approximated by a 2× 2 matrix
and solved with a Galerkin projection:



Galerkin Projection Continued

Hψ = Eψ
ε =

∫
ψ100(r⃗)(Hψ100(r⃗))dr⃗

−t =
∫
ψ100(r⃗)(Hψ100(r⃗ − R⃗))dr⃗

s =
∫
ψ100(r⃗)ψ100(r⃗ − R⃗)dr⃗

▶ Using the Galerkin projection, we can write the generalized
eigenvalue problem as:(

ε −t
−t ε

)(
c1
c2

)
= E

(
1 s
s 1

)(
c1
c2

)
(3)

▶ One finds that the eigenenergies are: E0 =
ε−t
1+s and Ee = ε+t

1−s

with corresponding eigenvectors: c⃗0 =
1√

2(1+s)

(
1
1

)
and

c⃗e = 1√
2(1−s)

(
1
−1

)



Identical Particles

▶ wavefunction has spatial and spin components,
Ψ(x1, x2) ≡ Ψ((r1, σ1), (r2, σ2))

▶ The wavefunction for electrons is fermionic and is in the space

▶

▶ Because the Hamiltonian doesn’t depend on spin, we have
[(S tot)2,H] = 0 and [(S tot

z ),H]

▶ We can separate spin and spatial degrees of freedom

▶ Additionally, if we have a triplet state, the spatial part of the
wavefunction must be anti-symmetric

φ(r⃗1, r⃗2) =
1√
2
(ϕ1(r⃗1)ϕ2(r⃗1)− ϕ1(r⃗2)ϕ2(r⃗1))



H2 Molecule

▶ What do we need to account for the extra electron?



Two Spin 1/2 Particles
▶ Spin basis states for a system of one spin 1

2 particles
▶ |+z⟩,|−z⟩

▶ Spin basis states for a system of two spin 1
2 particles

|+z ,+z⟩,|+z ,−z⟩,|−z ,+z⟩,|−z ,−z⟩
▶ |+z ,−z⟩



Two Spin 1/2 Particles Generators of Rotation

▶ Angular Momentum Operators: Ŝ1 = Ŝ1x + Ŝ1y + Ŝ1z
▶ Angular Momentum : [Ŝ1, Ŝ2] = 0

▶ As Tim touched upon, the eigenfunctions collapse to an
eigenstate upon measurement.
▶ If +z is measured for the first particle, we can label S1z =

ℏ
2 .

▶ If −z is measured for the second particle, we can label
S2z = −ℏ

2 .



Two Spin 1/2 Particles Generators of Rotation

▶ This state we just discussed is represented as
|+z ,−z⟩ = |+z⟩1 ⊗ |−z⟩2
▶ Number of spin states for spin 1/2 particles N = 2n where n is

the number of particles.

▶ Total Z-Spin is Sz = −ℏ2
22



H2 Molecule

▶ The Geometry of our Stystem:

▶ Both electrons occupy the 1s orbital

▶ Spatial wavefunctions:

ϕ1(r⃗) =
1√

2(1+s)
[ψ100(r⃗A1) + ψ100(r⃗B2)]

ϕ2(r⃗) =
1√

2(1−s)
[ψ100(r⃗A)− ψ100(r⃗B2)]



Ground State Antibonding and Bonding



Ground State Antibonding and Bonding



Ground State Antibonding and Bonding



N-particles

▶ Ψ(x1, ..., n) ∈ ⊗NL2(R3; C2)

▶ Permutation Operator- the operator that exchanges particles
eigenvalues have to be ±1

▶ P(i , j)ΨF (x1, ..., xi , ..., xj , ...xN) = ΨF (x1, ..., xj , ..., xi , ...xN)

▶ The symmetric group has N! permutations
CF

∑
π∈Sym(N)(−1)πψπ(1)(x1)ψπ(2)(x2)...ψπ(N)(xN)

▶ (−1)π =

{
1 π(even)

−1 π(odd)

▶ Simplest for N = 2



Slater Determinant

▶ rows → electrons

▶ columns → spin orbitals

▶ The Slater determinant is given by:

Ψ(1, 2, ...,N) =
1√
N!

∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) · · · χN(1)
χ1(2) χ2(2) · · · χN(2)

...
...

. . .
...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣



Hartree-Fock Theory

▶ Hartree-Fock takes AN and assumes that the wavefunction is
a single Slater determinant

▶ Variational Principle (Rayleigh-Ritz Method) where

Eψ = ⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

▶ ∂Eψ
∂ψ [ψ∗] = 0

▶ This becomes a minimization problem:
EHF = minψ∈A0

N ,⟨ψ|ψ⟩=1 ⟨Ψ|H|Ψ⟩, where A0
N is the set of all

Slater determinants for N electrons



Hartree-Fock on the Molecular Hamiltonian

H =
N∑
i=1

−1

2
∆ri −

N∑
i=1

Zi

|rj − Rj |
+

N∑
i<j

1

|ri − rj |

▶ The scaling of hartree fock

⟨Ψ|
N∑
i=1

(−1

2
∇ri + Vext(ri ))|Ψ⟩ = N ⟨Ψ| − 1

2
∇r1 + Vext(r1)|Ψ⟩ (4)

⟨Ψ|
∑
i<j

1

|ri − rj |
|Ψ⟩ =

(
N

2

)
⟨Ψ| 1

|r1 − r2|
|Ψ⟩ (5)



Hartree Fock Continued

▶ There is only one interacting term with the Hamiltonian in the
computation

▶ The contribution of this term is zero unless π(k) = π′(k)

▶ Therefore: ⟨Ψ|1body |Ψ⟩ = 1
N

∑N
i=1 ⟨ψi | − 1

2∇+ Vext |ψi ⟩



Two Body Term
▶

We will see that when π(1) = π′(1) we get (−1)(−1) = 1 and
when π(1) = π′(2) we obtain (−1)(1) = 1.The two
permutations when this term is non-zero are when:

▶



Simplifying 2-body term



Hartree Fock Energy Functional


