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Stern-Gerlach

» Hot Silver atoms in an oven

» Heating causes the silver to loose a valence electron and have
a magnetic moment g € R

» Homogeneous magnetic field in the z-direction

Silver atom

Oven Magnetic field Screen

» What pattern do we expect to see on the screen?



Stern-Gerlach Results

2
22

(a) Classical prediction (b) Experiment



Stern-Gerlach Results Part 2

» Create a filter using this magnet, block one channel (either up
or down).

» Feed in |[+2z) and get out |+z) and |—z) states!
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Spin 1/2 States

» Quantum Mechanics-the branch of mechanics that deals with
the mathematical description of the motion and interaction of
subatomic particles, incorporating the concepts of
guantization of energy, wave-particle duality, the
uncertainty principle, and the correspondence principle.-

» The spin 1/2 particle is a 2D vector on a hilbert space H
isomorphic to C?

¥) = al+z) + e2l-2)
) =alt)+cll)
» Dot product: (+z|+2z) =(—z|—2z) =1, (+z]—2z) =0

> ) =>" cilp), i €C
» |ci|? is the probability of being in the state |1);)



Bloch Sphere
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Spin Operators

> Alp) = a|p), where a is an observable/measurable quantity
> Expectation Value of (A) = (|Aly) = 327, ailcif?
» Pauli Matrices(Spin Operators):

» Common state vectors |+z),|£x),|+y) have corresponding

observable values :I:% or +1 depicted below
P In the z-basis, these can be represented as:
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Rotations

» Why are the spin operators called the generators of rotations?
> R(dpk) =1+ LS,d¢
> dé— lim

N— oo
> lllegal notation R(¢k) = Nlim [1— LS(&)N = e "o=o/n
— 00 Y
> Expand the exponential: ‘
R(pk) |+z) = [1 — 2= 4 L(=252) 1 ]|+2)



Geometrical Approach to a New Basis
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The Hydrogen Atom Revisited
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E, = 2(k+,)2 where n = k + /
Let0O</<nand =/ <m</wheren=1,23...
We find that the lowest energy eigenvalue corresponds to
n=1,/=0,m=0 with energy Eg = —3
Referring to last Iecture we know that
I+1 1
V(r)|i=o = I|mr%oo o2 |7
The eigenvalue problem now becomes.
124 (1 Du=Eu

20r2
Using u(r) = re™":
1 1 1
Ee_r —e 'r+re — ;re_r* = —Ere_r (1)

We will call this the first spherical harmonic:

Y100(F) =/ 2=e"



» What can we determine from the picture?

» How many spin states do we need to describe this system?

» How many orbitals?

Electron

A ! B
M

Hydrogen molecular ion HE with clamped nuclei A &

and B, internuclear distance R and plane of symmetry

M.



Ansatz for Spatial Component of Wavefunction of H,"

» The original Hamiltonian for H: A= —%Vr — %

> e .- _ly _ 1 _ _1_
The new Hamiltonian for Hy": H 5Vr A~ A

» Approximate the wavefunction as a linear combination of the
1s orbitals:

P(F) = c1P1,0,0 + 2tP1,0,0(F — R)

> Since the vector span{t1,0.0(7), ¥1.00(F — R)} is isomorphic
to C2, the hamiltonian can be approximated by a 2 x 2 matrix
and solved with a Galerkin projection:



Galerkin Projection Continued

Hy = Ex)
e = [100(7)(HY100(F))
—t = [ 9100(F)( Hipro0(F = R))dr
s = [ ¥100(Avr00(F — R)dF

dr
R))d

» Using the Galerkin projection, we can write the generalized
eigenvalue problem as:

e —t\ [a) 1 s\ (a
(@)= DE) o
» One finds that the eigenenergies are: Eg = 1—+s and E, = —S
with corresponding eigenvectors: ¢y = W G) and
S

Ly 1
Ce = V/2(1—s) (—1



Identical Particles

» wavefunction has spatial and spin components,

V(xi,x2) = W((r1,01),(r2,02))
» The wavefunction for electrons is fermionic and is in the space
>

The wavefunction |¥) for electrons is always a fermionic state and is in the space Ay =
A® L2(R3; C2), which consists of all anti-symmetric functions in the tensor product
space L?(R3; C?) @ L%(R?; C?).

» Because the Hamiltonian doesn't depend on spin, we have
[(§%)%, H] = 0 and [(S}*), H]
> We can separate spin and spatial degrees of freedom

> Additionally, if we have a triplet state, the spatial part of the
wavefunction must be anti-symmetric

(71, ) = J5(¢1(7)2(71) — d1(72)p2(71))



H> Molecule

» What do we need to account for the extra electron?

Covalent bond - H2



Two Spin 1/2 Particles
» Spin basis states for a system of one spin % particles
> [+2).]-2)

» Spin basis states for a system of two spin % particles
[+z,+2), !+Z z),|-2,+2).[-2,-2)
> |4z, —z)

< @



Two Spin 1/2 Particles Generators of Rotation

» Angular Momentum Operators: S =S+ 51), + S,
» Angular Momentum : [SA17 §2] =0
> As Tim touched upon, the eigenfunctions collapse to an
eigenstate upon measurement.
» |If 4z is measured for the first particle, we can label S;, =
» If —z is measured for the second particle, we can label

h
522 = _5

-



Two Spin 1/2 Particles Generators of Rotation

» This state we just discussed is represented as
[+z,—2) = |+2); ® [-2),
» Number of spin states for spin 1/2 particles N = 2" where n is
the number of particles.

» Total Z-Spinis S, = _g;



H> Molecule

» The Geometry of our Stystem:

H:
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» Both electrons occupy the 1s orbital

» Spatial wavefunctions:

o(r) = \/ﬁ[wloo(ﬁu) + 100(7B2)]

() = \/2(11—_5)[?,1)100(7;\) — 100(7B2)]



Ground State Antibonding and Bonding
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Ground State Antibonding and Bonding




Ground State Antibonding and Bonding




N-particles

> U(xi,...,n) € @VL2(R3;C?)

» Permutation Operator- the operator that exchanges particles
eigenvalues have to be +1

> P(i,j)WF(Xl, ceey Xiy eeny Xjy ...XN) = WF(Xl, ceey Xjy ooy Xii ...XN)

» The symmetric group has N! permutations
Cr ZWESym(N)(_l)WwW(l)(Xl)¢ﬂ'(2)(X2)"'¢7r(N)(XN)

- |1 m(even)
> (71 _{—1 m(odd)

» Simplest for N = 2

N N
Ay = \ L2(R%C?) C Q) L2 (R C?).



Slater Determinant

» rows — electrons
» columns — spin orbitals

» The Slater determinant is given by:
x1(1)  x2(1)

1 |[xa2) xe(2)

V(L2 N) =

Xl(-N) Xz(-N)

xn (1
xn(2

~— —

XN-(N)



Hartree-Fock Theory

» Hartree-Fock takes Ay and assumes that the wavefunction is
a single Slater determinant

» Variational Principle (Rayleigh-Ritz Method) where

 lHL)
Ey = “omy
> G =0

> Th|s becomes a minimization problem:
— 0 :
Eur = MiNye 49 (1)1 (VIH|V), where Aj, is the set of all
Slater determinants for N electrons



Hartree-Fock on the Molecular Hamiltonian
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Hartree Fock Continued

» There is only one interacting term with the Hamiltonian in the
computation

< ’ Am + Vext(r1) "I’>

N.Z oM <¢w(1)(m1)’ - Ar1+Vext(r1)

w7

y ﬁ <¢ﬂ(k)(mk) ’ww(k)(:ck))wk

! (1) ($1)>

[

=N Z <¢w(1)($1)’ An + Vext (71) [¥r (1) (21 > H O (kym' (k

T,

» The contribution of this term is zero unless 7(k) = 7/(k)
> Therefore: (W|1poay|V) = & Z,N:l (1hi] — AV + Vexe|thi)



Two Body Term
=

1
<\IJ’ |’I'1 - 1'2' ’\IJ>
=N Z )T (=1)”" <¢n 1)(171)1.01;(2)(932)’ |r -
N
X ]___[ <w1r (mk)
- Sy 1 (thr(0) (@)t (@)
x H‘Sw(k)w(k)-
k=3
We will see that when 7(1) = 7/(1) we get (—1)(—1) =1 and

when 7(1) = 7/(2) we obtain (—1)(1) = 1.The two
permutations when this term is non-zero are when:

¢7r'(1 (ml)wﬂ' ( )>ﬂ'31 s

wn'(k)(mk)> o
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| 1"/| x,z’



Simplifying 2-body term

<\II|; \mirﬂ ‘IJ>
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Hartree Fock Energy Functional
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