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Key Points

▶ First quantization is ”the way we have done things”, with
Hilbert space H.

▶ Second quantization is a new way to do things, with Fock
space F .
▶ Can be thought of as a sum of an arbitrarily large number of

Hilbert spaces.

▶ Names are historical holdovers.

▶ Second quantization allows us to represent the probabilities of
states with various electron configurations.
▶ In all; more degrees of freedom, so can represent more.



Spin Orbitals

▶ Four quantum numbers completely the state of an electron in
an atom.
▶ n, l , and ml , which determine its spatial shell and subshell.

▶ n > 0, 0 ≤ l < n, −l ≤ ml ≤ l .

▶ ms , which determines its spin and may either be 1
2 or −1

2 .

▶ You may take each state of ms to be ”spin-functions” α, β...
for generality.

▶ Pauli Exclusion Principle: These four numbers must be unique
for each electron in an atom.



Spin Orbitals

▶ We call these combinations of four numbers spin-orbitals.
▶ Designate a spin-orbital by all its information (ϕ1pzα) or simply

as the Nth spin-orbital (ϕ0, ϕ1...)

▶ If N electrons are in an atom, then N spin-orbitals are
occupied, though there may be more unoccupied spin orbitals.

▶ Define r1 to represent the first electron, r2 to represent the
second, and so on.

▶ Then we can define states by which electrons are in which
orbitals.



Slater Determinant Formulation

Figure: 2-Electron Slater Determinant

Figure: Generalized Slater Determinant



Fock Space

▶ We can define each wavefunction / determinant uniquely in
Fock space, a linear vector space.

▶ The basis vectors of Fock space are occupation-number (ON)
vectors. Say our system has M spin orbitals. Then we could
define an ON vector as follows:
▶ |k⟩ = |k1, k2, k3, ...kM⟩ where kP = 1 if spin-orbital P is

occupied, and 0 if it is not.

▶ The inner product of two ON vectors is 1 if they are the same
and 0 otherwise.



Fock Space

▶ We can have linear combinations of ON vectors.
▶ |c⟩ =

∑
k ck |k⟩

▶ ⟨d |c⟩ =
∑

mk d
∗
m ⟨m|k⟩ ck

▶ Fock space F . can be thought to have subspaces F(M),
which includes only the ON vectors with M spin-orbitals (and
therefore 2M dimensions).
▶ Additionally, it has subspaces F(M,N), which includes ON

vectors with M spin-orbitals and N electrons (so the sum of
the kP within each ON vector equals N). These have
dimension

(
M
N

)
.

▶ The one state in F(M, 0) for each M is the vacuum state,
sometimes written |vac⟩.



Matrix Representation

▶ How can we connect this back to first quantization with
states?

▶ For each kP in an ON vector, we can represent it as

(
1
0

)
if it

is unoccupied and

(
0
1

)
if it is occupied.

▶ Then our whole ON vector is the outer product of all its kP .

▶ Fully occupied ON vector with 2 spin-orbitals and 2 electrons:(
0
1

)
⊗
(
0
1

)
=


0
0
0
1



▶ Useful for ”doing the math” of second quantization, gets
unwieldy as spin-orbitals increase.



Creation & Annihilation Operators

▶ A Fock space F(M) has M creation operators (a∗1, a
∗
2, ...a

∗
M)

and M annihilation operators (a1, a2, ...aM)
▶ They are conjugates, choice of which one is the conjugate is by

convention.

▶ Other terms: ”raising” and ”lowering” operators, ”ladder”
operators, etc. due to their effect on eigenfunctions.



Creation Operator

▶ a∗P |k⟩ = a∗P |k1, ...kP , ...kM⟩ =?
▶ If kP = 0, a∗P |k⟩ = Γk

P |k1, ...1P , ...kM⟩
▶ If kP = 1, a∗P |k⟩ = 0

▶ So in all, a∗P |k⟩ = δkP ,0Γ
k
P |k1, ...1P , ...kM⟩

▶ (a∗P)
2 = 0

▶ Γk
P = (−1)

∑P−1
i=1 ki . It is a phase factor necessary for

representation.

▶ We can also see how all ON vectors may be represented as a
string of creation operators acting on |vac⟩.



Creation Operator Anticommutation

▶ We are working with fermions, so we care about
anticommutation. (One could also define bosonic Fock space,
but we work with fermionic.)

▶ [a∗P , a
∗
Q ]+ = 0 when P ̸= Q, in part due to Γ.

▶ [A,B]+ = AB + BA



Annihilation Operator

▶ aP is simple from here! Properties are exactly what you
expect from being the conjugate of the creation operator.
▶ aP |k⟩ = δkP ,1Γ

k
P |k1, ...0P , ...kM⟩

▶ [aP , aQ ]+ = 0

▶ [a∗P , aQ ]+ = [aP , a
∗
Q ]+ = 0 for P ̸= Q.

▶ [a∗P , aP ] = 1. Consider (aPa
∗
P + a∗PaP) |k⟩.



Creation & Annihilation Matrix Notation

▶ a =

(
0 1
0 0

)
.

▶ aP = σz1 ⊗ σz2 ⊗ ...⊗ σzP−1
⊗ a⊗ IP+1 ⊗ ...⊗ IM

▶ a∗P = σz1 ⊗ σz2 ⊗ ...⊗ σzP−1
⊗ a∗ ⊗ IP+1 ⊗ ...⊗ IM

▶ This matrix representation can be used for clearly
manipulating small ON vectors, or proving the
anticommutation relations.



More Operators: ON Operator

▶ Creation and annihilation operators change F(M,N). Let’s
look at operators that preserve this subspace.

▶ NP = a∗PaP . So clearly, NP |k⟩ = kP |k⟩.

▶ ON Operator is Hermitian, idempotent, commutes with other
ON Operators and all operators XQ where P ̸= Q.
▶ [NP , aP ] = −aP , [NP , a

∗
P ] = a∗P , etc.



More Operators: ON Operator

▶ ON vectors are the simultaneous eigenvectors of the set of
Hermitian operators NP .

▶ ON vectors are completely characterized by which ON
operators they are eigenvectors of.
▶ This is a one-to-one mapping.



More Operators: Number Operator

▶ N |k⟩ = n |k⟩, where n =
∑M

i=1 ki

▶ Counts the number of electrons in the state.

▶ Commutes with ”number-conserving” operators.
▶ a∗P is not number-conserving.

▶ aQa
∗
P is number-conserving.

▶ Needs to maintain F(M,N).



More Operators: Excitation Operator

▶ X = a∗PaQ , where P ̸= Q

▶ ”Excites” an electron from one spin-orbital to another.
▶ Some formulations only allow you to go up which is why this is

”excitation”.

▶ In this formulation, going in either direction is OK.

▶ Note that this maintains F(M,N).



Why Second Quantization?

▶ Consider resolving ⟨ij |kl⟩. (Probability of finding a 2-electron
state in a 2-electron state).

▶ First quantization: Requires numerous matrix multiplications
that bring it to O(n3).

▶ Second quantization: Inherent information of our new
representation allows for methods (covered next time) that
bring it to O(1).


