Second Quantization I
 Fock Space, Creation and Annihilation Operators, Excitation Operators

Michael Papadopuolos

Presentation 3
Jan. 30, 2024

Key Points

- First quantization is "the way we have done things", with Hilbert space \mathcal{H}.
- Second quantization is a new way to do things, with Fock space \mathcal{F}.
- Can be thought of as a sum of an arbitrarily large number of Hilbert spaces.
- Names are historical holdovers.
- Second quantization allows us to represent the probabilities of states with various electron configurations.
- In all; more degrees of freedom, so can represent more.

Spin Orbitals

- Four quantum numbers completely the state of an electron in an atom.
- n, I, and m_{l}, which determine its spatial shell and subshell.
- $n>0,0 \leq I<n,-I \leq m_{l} \leq I$.
- m_{s}, which determines its spin and may either be $\frac{1}{2}$ or $\frac{-1}{2}$.
- You may take each state of m_{s} to be "spin-functions" $\alpha, \beta \ldots$ for generality.
- Pauli Exclusion Principle: These four numbers must be unique for each electron in an atom.

Spin Orbitals

- We call these combinations of four numbers spin-orbitals.
- Designate a spin-orbital by all its information ($\phi_{1 p_{z} \alpha}$) or simply as the N th spin-orbital $\left(\phi_{0}, \phi_{1} \ldots\right)$
- If N electrons are in an atom, then N spin-orbitals are occupied, though there may be more unoccupied spin orbitals.
- Define r_{1} to represent the first electron, r_{2} to represent the second, and so on.
- Then we can define states by which electrons are in which orbitals.

$$
\left|\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\right\rangle=\frac{1}{\sqrt{2}}\left[\varphi_{1 s \alpha}\left(\mathbf{r}_{1}\right) \varphi_{1 s \beta}\left(\mathbf{r}_{2}\right)-\varphi_{1 s \alpha}\left(\mathbf{r}_{2}\right) \varphi_{1 s \beta}\left(\mathbf{r}_{1}\right)\right]
$$

Slater Determinant Formulation

$$
\left|\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\varphi_{1 s}(1) \alpha(1) & \varphi_{1 s}(1) \beta(1) \\
\varphi_{1 s}(2) \alpha(2) & \varphi_{1 s}(2) \beta(2)
\end{array}\right|
$$

Figure: 2-Electron Slater Determinant

$$
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\varphi_{1}\left(\mathbf{r}_{1}\right) & \varphi_{2}\left(\mathbf{r}_{1}\right) & \cdots & \varphi_{N}\left(\mathbf{r}_{1}\right) \\
\varphi_{1}\left(\mathbf{r}_{2}\right) & \varphi_{2}\left(\mathbf{r}_{2}\right) & \cdots & \varphi_{N}\left(\mathbf{r}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{1}\left(\mathbf{r}_{N}\right) & \varphi_{2}\left(\mathbf{r}_{N}\right) & \cdots & \varphi_{N}\left(\mathbf{r}_{N}\right)
\end{array}\right|
$$

Figure: Generalized Slater Determinant

Fock Space

- We can define each wavefunction / determinant uniquely in Fock space, a linear vector space.

$$
\mathcal{F}=\bigoplus_{M=0}^{N_{B}} \mathcal{H}^{(M)}
$$

- The basis vectors of Fock space are occupation-number (ON) vectors. Say our system has M spin orbitals. Then we could define an ON vector as follows:
- $|\boldsymbol{k}\rangle=\left|k_{1}, k_{2}, k_{3}, \ldots k_{M}\right\rangle$ where $k_{P}=1$ if spin-orbital P is occupied, and 0 if it is not.
- The inner product of two ON vectors is 1 if they are the same and 0 otherwise.

Fock Space

- We can have linear combinations of ON vectors.
- $|\boldsymbol{c}\rangle=\sum_{k} c_{k}|\boldsymbol{k}\rangle$
- $\langle\boldsymbol{d} \mid \boldsymbol{c}\rangle=\sum_{m k} d_{m}^{*}\langle\boldsymbol{m} \mid \boldsymbol{k}\rangle c_{k}$
- Fock space \mathcal{F}. can be thought to have subspaces $\mathcal{F}(M)$, which includes only the ON vectors with M spin-orbitals (and therefore 2^{M} dimensions).
- Additionally, it has subspaces $\mathcal{F}(M, N)$, which includes ON vectors with M spin-orbitals and N electrons (so the sum of the k_{P} within each $O N$ vector equals N). These have dimension $\binom{M}{N}$.
- The one state in $\mathcal{F}(M, 0)$ for each M is the vacuum state, sometimes written $|\mathrm{vac}\rangle$.

Matrix Representation

- How can we connect this back to first quantization with states?
- For each k_{P} in an ON vector, we can represent it as $\binom{1}{0}$ if it is unoccupied and $\binom{0}{1}$ if it is occupied.
- Then our whole ON vector is the outer product of all its k_{P}.
- Fully occupied ON vector with 2 spin-orbitals and 2 electrons:

$$
\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

- Useful for "doing the math" of second quantization, gets unwieldy as spin-orbitals increase.

Creation \& Annihilation Operators

- A Fock space $\mathcal{F}(M)$ has M creation operators $\left(a_{1}^{*}, a_{2}^{*}, \ldots a_{M}^{*}\right)$ and M annihilation operators $\left(a_{1}, a_{2}, \ldots a_{M}\right)$
- They are conjugates, choice of which one is the conjugate is by convention.
- Other terms: " raising" and "lowering" operators, "ladder" operators, etc. due to their effect on eigenfunctions.

Creation Operator

$-a_{P}^{*}|\boldsymbol{k}\rangle=a_{P}^{*}\left|k_{1}, \ldots k_{P}, \ldots k_{M}\right\rangle=$?

- If $k_{P}=0, a_{P}^{*}|\boldsymbol{k}\rangle=\Gamma_{P}^{k}\left|k_{1}, \ldots 1_{P}, \ldots k_{M}\right\rangle$
- If $k_{P}=1, a_{P}^{*}|\boldsymbol{k}\rangle=0$
- So in all, $a_{P}^{*}|\boldsymbol{k}\rangle=\delta_{k_{P}, 0} \Gamma_{P}^{k}\left|k_{1}, \ldots 1_{P}, \ldots k_{M}\right\rangle$
- $\left(a_{P}^{*}\right)^{2}=0$
$-\Gamma_{P}^{k}=(-1)^{\sum_{i=1}^{P-1} k_{i}}$. It is a phase factor necessary for representation.
- We can also see how all ON vectors may be represented as a string of creation operators acting on $|v a c\rangle$.

Creation Operator Anticommutation

- We are working with fermions, so we care about anticommutation. (One could also define bosonic Fock space, but we work with fermionic.)
- $\left[a_{P}^{*}, a_{Q}^{*}\right]_{+}=0$ when $P \neq Q$, in part due to Γ.
- $[A, B]_{+}=A B+B A$

Annihilation Operator

- a_{P} is simple from here! Properties are exactly what you expect from being the conjugate of the creation operator.
- $a_{P}|\boldsymbol{k}\rangle=\delta_{k p, 1} \Gamma_{P}^{k}\left|k_{1}, \ldots 0_{P}, \ldots k_{M}\right\rangle$
- $\left[a_{P}, a_{Q}\right]_{+}=0$
- $\left[a_{P}^{*}, a_{Q}\right]_{+}=\left[a_{P}, a_{Q}^{*}\right]_{+}=0$ for $P \neq Q$.
- $\left[a_{P}^{*}, a_{P}\right]=$ 1. Consider $\left(a_{P} a_{P}^{*}+a_{P}^{*} a_{P}\right)|\boldsymbol{k}\rangle$.

Creation \& Annihilation Matrix Notation

- $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
- $a_{P}=\sigma_{z_{1}} \otimes \sigma_{z_{2}} \otimes \ldots \otimes \sigma_{z_{P-1}} \otimes a \otimes I_{P+1} \otimes \ldots \otimes I_{M}$
$-a_{P}^{*}=\sigma_{z_{1}} \otimes \sigma_{z_{2}} \otimes \ldots \otimes \sigma_{z_{P-1}} \otimes a^{*} \otimes I_{P+1} \otimes \ldots \otimes I_{M}$
- This matrix representation can be used for clearly manipulating small ON vectors, or proving the anticommutation relations.

More Operators: ON Operator

- Creation and annihilation operators change $\mathcal{F}(M, N)$. Let's look at operators that preserve this subspace.
- $N_{P}=a_{P}^{*} a_{P}$. So clearly, $N_{P}|\boldsymbol{k}\rangle=k_{P}|\boldsymbol{k}\rangle$.
- ON Operator is Hermitian, idempotent, commutes with other ON Operators and all operators X_{Q} where $P \neq Q$.
- $\left[N_{P}, a_{P}\right]=-a_{P},\left[N_{P}, a_{P}^{*}\right]=a_{P}^{*}$, etc.

More Operators: ON Operator

- ON vectors are the simultaneous eigenvectors of the set of Hermitian operators N_{P}.
- ON vectors are completely characterized by which ON operators they are eigenvectors of.
- This is a one-to-one mapping.

More Operators: Number Operator

- $N|\boldsymbol{k}\rangle=n|\boldsymbol{k}\rangle$, where $n=\sum_{i=1}^{M} k_{i}$
- Counts the number of electrons in the state.
- Commutes with "number-conserving" operators.
- a_{P}^{*} is not number-conserving.
- $a_{Q} a_{P}^{*}$ is number-conserving.
- Needs to maintain $\mathcal{F}(M, N)$.

More Operators: Excitation Operator

- $X=a_{P}^{*} a_{Q}$, where $P \neq Q$
- "Excites" an electron from one spin-orbital to another.
- Some formulations only allow you to go up which is why this is "excitation".
- In this formulation, going in either direction is OK.
- Note that this maintains $\mathcal{F}(M, N)$.

Why Second Quantization?

- Consider resolving $\langle i j| k\rangle$. (Probability of finding a 2-electron state in a 2-electron state).
- First quantization: Requires numerous matrix multiplications that bring it to $\mathcal{O}\left(n^{3}\right)$.
- Second quantization: Inherent information of our new representation allows for methods (covered next time) that bring it to $\mathcal{O}(1)$.

