Quantum Many-Body Theory

Presentation 1
Tim Lund

January 16, 2024

Preliminaries

States

- The state of a quantum object is described by a state vector $|\psi\rangle$
- The set of state vectors is the state space \mathcal{H}, which is a vector space isomorphic to \mathbb{C}^{2}

Observables

- Physical observables (position, velocity, etc.) of quantum objects are represented by nonsingular Hermitian operators on \mathcal{H}
- The eigenvectors of an observable are referred to as its eigenstates

Since the eigenstates of an observable span \mathcal{H}, any state vector can be expressed as a linear combination thereof

$$
|\psi\rangle=\sum_{i}^{\substack{\text { Eigenstate } \\ \downarrow \\ c_{i} \in \mathbb{C}}} c_{i}\left|\varphi_{i}\right\rangle
$$

Preliminaries

Measurement

- A measurement of an observable must interact with the quantum state, causing it to jump to an eigenstate of the observable

- The state to which an object jumps upon measurement is random, occurring with probability $\left|c_{i}\right|^{2}$

Preliminaries

Uncertainty

- Two observables can only be measured simultaneously if they can be diagonalized using the same eigenstates

The necessary and sufficient condition for this is that the commutator must equal zero

$$
[\mathbf{A}, \mathbf{B}]:=\mathbf{A B}-\mathbf{B A}
$$

Additional Notes

- The inner product between two state vectors $|\varphi\rangle,|\psi\rangle \in \mathcal{H}$ is denoted by $\langle\varphi \mid \psi\rangle$
- The physical meanings of the state vectors $|\psi\rangle$ and $c|\psi\rangle$ are the same for all $c \neq 0$; we may therefore assume that $\langle\psi \mid \psi\rangle=1$

The Shrödinger Equation

The Shrödinger equation describes the evolution of a quantum state $|\psi(t)\rangle$ over time

$$
\mathrm{i} \partial_{t}|\psi(t)\rangle=\mathbf{H}(t)|\psi(t)\rangle
$$

Where the Hamiltonian operator \mathbf{H} gives the total energy of the system

The Shrödinger Equation

We consider the solution to the Shrödinger equation when the Hamiltonian is time-independent

The Hamiltonian is diagonalized via

$$
\mathbf{H}\left|\varphi_{i}\right\rangle=E_{i}\left|\varphi_{i}\right\rangle
$$

Case 1

If the initial state $\left|\psi\left(t_{0}\right)\right\rangle$ is an eigenstate of \mathbf{H}, then the solution to the Shrödinger equation is

$$
|\psi(t)\rangle=e^{-\mathrm{i} E_{i}\left(t-t_{0}\right)}\left|\psi\left(t_{0}\right)\right\rangle
$$

The Shrödinger Equation

Case 2

If the initial state is not an eigenstate of \mathbf{H}, recall that we may express it as a linear combination of the eigenstates

$$
\left|\psi\left(t_{0}\right)\right\rangle=\sum_{i} c_{i}\left|\varphi_{i}\right\rangle
$$

This yields the solution

$$
|\psi(t)\rangle=\sum_{i} c_{i} e^{-\mathrm{i} E_{i}\left(t-t_{0}\right)}\left|\varphi_{i}\right\rangle .
$$

Representing Real Space

Particle in One Dimension

- Hilbert space

$$
\mathcal{H}=\left\{\left.f\left|\int_{\mathbb{R}}\right| f(x)\right|^{2} \mathrm{~d} x<\infty\right\}
$$

- Inner product

$$
\langle\varphi \mid \psi\rangle=\int_{\mathbb{R}} \varphi^{*}(x) \psi(x) \mathrm{d} x
$$

- Normalization condition

$$
\langle\psi \mid \psi\rangle=\int_{\mathbb{R}}|\psi(x)|^{2} \mathrm{~d} x=1
$$

Representing Real Space

Particle in One Dimension

- Position operator \mathbf{x}
- Momentum operator \mathbf{p}

$$
\mathbf{p}=-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

- We note that the position and momentum operators do not commute

$$
[\mathbf{x}, \mathbf{p}]=\mathrm{i}
$$

This is the canonical commutation relation, which gives us the Heisenberg uncertainty principle

Representing Real Space

Particle in Three Dimensions

- Position operator $\mathbf{r}=(\mathbf{x}, \mathbf{y}, \mathbf{z})^{\top}$
- Momentum operator $\mathbf{p}=\left(\mathbf{p}_{x}, \mathbf{p}_{y}, \mathbf{p}_{z}\right)^{\top}$
- We introduce the angular momentum operator \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=\mathbf{r} \times\left(-i \nabla_{\mathbf{r}}\right)
$$

- We often work with the square magnitude of the angular momentum $\mathbf{L}^{2}=\mathbf{L}_{x}^{2}+\mathbf{L}_{y}^{2}+\mathbf{L}_{z}^{2}$

In spherical coordinates

$$
\mathbf{L}^{2}=-\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)-\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

We observe that this is independent of radial direction

Eigenfunctions of \mathbf{L}^{2}

We consider the eigenproblem

$$
\mathbf{L}^{2} Y(\theta, \varphi)=E Y(\theta, \varphi)
$$

We make the ansatz

$$
Y(\theta, \varphi)=\Theta(\theta), \Phi(\varphi)
$$

Substituting gives us

$$
\left(-\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)-\frac{1}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}\right) \Theta(\theta) \Phi(\varphi)=E \Theta(\theta) \Phi(\varphi)
$$

Eigenfunctions of \mathbf{L}^{2}

Separating out the φ variable

$$
-\frac{\partial^{2} \Phi}{\partial \varphi^{2}}=m^{2} \Phi
$$

Where m^{2} is an eigenvalue
This yields solutions of the form

$$
\Phi(\varphi)=A e^{\mathrm{i} m \varphi}+B e^{-\mathrm{i} m \varphi}
$$

We find that m must be an integer

Eigenfunctions of \mathbf{L}^{2}

Separating out the θ variable

$$
-\frac{1}{\sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial \Theta}{\partial \theta}\right)+\frac{m^{2}}{\sin ^{2}(\theta)} \Theta=k \Theta
$$

Where k is an eigenvalue; we find that $k=I(I+1)$ for $I \in \mathbb{N}$
Applying the change of variables $\zeta=\cos (\theta), \xi(\cos (\theta))=\Theta(\theta)$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \zeta}\left[\left(1-\zeta^{2}\right) \frac{\mathrm{d} \xi}{\mathrm{~d} \zeta}\right]+\left[k-\frac{m^{2}}{1-\zeta^{2}}\right] \xi=0
$$

With $k=I(I+1)$, this is equivalent to the general Legendre equation

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} P_{I}^{m}(x)\right]+\left[I(I+1)-\frac{m^{2}}{1-x^{2}}\right] P_{I}^{m}(x)=0
$$

Eigenfunctions of \mathbf{L}^{2}

The solutions $P_{I}^{m}(x)$ to the general Legendre equation are called the associated Legendre polynomials

https://en.wikipedia.org/wiki/Associated_Legendre_polynomials\#/media/File:Mplwp_legendreP15a1.svg
Therefore, our solutions to the eigenproblem in θ are of the form

$$
\Theta(\theta)=P_{I}^{m}(\cos (\theta))
$$

Eigenfunctions of L^{2}

All eigenfunctions $Y(\theta, \varphi)$ for \mathbf{L}^{2} are therefore given by

$$
Y_{l m}(\theta, \varphi)=C_{l m} P_{l}^{m}(\cos (\theta)) e^{\mathrm{i} m \varphi}
$$

Where $C_{l m}$ is a normalization factor

[^0]
The Hamiltonian in Real Space

Particle in One Dimension

Particle in Three Dimensions

$$
\mathbf{H}=-\frac{1}{2} \Delta_{\mathbf{r}}+V(\mathbf{r})
$$

Where $\Delta_{r}=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$ is the Laplacian

Representing the Hydrogen Atom

Time-Independent Shrödinger Equation

The stationary state of the time-independent Shrödinger equation can be found by solving the eigenproblem

$$
\left(-\frac{1}{2} \Delta_{\mathbf{r}}+V(\mathbf{r})\right) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

The hydrogen atom is the only element on the periodic table for which the Shrödinger equation has a closed-form solution

https://www.pinterest.com/pin/144678206755850918/

Representing the Hydrogen Atom

We consider the nucleus to be fixed at the origin, so that

$$
V(\mathbf{r})=-\frac{1}{r}
$$

Where $r=|\mathbf{r}|$
Since representation in spherical coordinates is helpful, we express the Laplacian accordingly

$$
\begin{aligned}
\Delta_{r} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}} \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{r^{2}} \mathbf{L}^{2}
\end{aligned}
$$

Representing the Hydrogen Atom

We make the ansatz

$$
\psi(r, \theta, \varphi)=R(r) Y_{l m}(\theta, \varphi)
$$

This allows us to separate out the radial component of the eigenproblem

$$
-\frac{1}{2 r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{I(I+1)}{2 r^{2}} R(r)-\frac{1}{r} R(r)=E R(r)
$$

Where $\tilde{V}(r)=\frac{I(I+1)}{2 r^{2}}-\frac{1}{r}$
Applying the change of variables $u(r)=r R(r)$

$$
-\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}} u(r)+\tilde{V}(r) u(r)=E u(r)
$$

Representing the Hydrogen Atom

As $r \rightarrow \infty, \tilde{V}(r) \rightarrow 0$, so the equation looks like

$$
-\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}} u(r)=E u(r)
$$

If $E>0$, we have $u(r) \sim c_{1} e^{i \sqrt{2 E_{r}}}+c_{2} e^{i \sqrt{2 E_{r}}}$, which is not square integrable

Therefore for $E<0$, we can solve for the eigenvalues as

$$
E_{k l}=-\frac{1}{2(k+l)^{2}}
$$

[^0]: http://opticaltweezers.org/chapter-5-electromagnetic-theory/figure-5-2-spherical-harmonics/

