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Preliminaries

States
® The state of a quantum object is described by a state vector |1))
® The set of state vectors is the state space #, which is a vector space
isomorphic to C?

Observables
* Physical observables (position, velocity, etc.) of quantum objects
are represented by nonsingular Hermitian operators on ‘H
® The eigenvectors of an observable are referred to as its eigenstates

Since the eigenstates of an observable span H, any state vector can be
expressed as a linear combination thereof

Eigenstate

1
) = Z?w

i
c;eC

2/20



Preliminaries

Measurement

® A measurement of an observable must interact with the quantum
state, causing it to jump to an eigenstate of the observable

State to which the object jumps
3
Alpi) = 3Ti|90i>

Measured value
Physical observable

® The state to which an object jumps upon measurement is random,
occurring with probability |c;|?
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Preliminaries

Uncertainty

® Two observables can only be measured simultaneously if they can be
diagonalized using the same eigenstates

The necessary and sufficient condition for this is that the commutator must

equal zero

[A,B] := AB — BA

Additional Notes

® The inner product between two state vectors |¢), |¢)) € H is denoted
by (p[¢))

® The physical meanings of the state vectors |¢)) and c|t) are the same
for all ¢ # 0; we may therefore assume that (¢[¢)) =1
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The Shrodinger Equation

The Shrodinger equation describes the evolution of a quantum state |¢)(t))
over time

i0e[9(£)) = H(t)[¥(t))

Where the Hamiltonian operator H gives the total energy of the system



The Shrodinger Equation

We consider the solution to the Shrodinger equation when the Hamiltonian
is time-independent

The Hamiltonian is diagonalized via

Hlpi) = Ei|oi)
Case 1

If the initial state |¢)(tp)) is an eigenstate of H, then the solution to the
Shrodinger equation is

(1)) = e EET0) (1))
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The Shrodinger Equation

Case 2

If the initial state is not an eigenstate of H, recall that we may express it
as a linear combination of the eigenstates

(k) = cilei)

1

This yields the solution

[V(E) = 3 e By,



Representing Real Space

Particle in One Dimension

H= {f‘/R 1£(x)]%dx < oo}

(ol) = /R " () (x)dx

® Hilbert space

® |nner product

® Normalization condition

(W) = /R () 2dx = 1



Representing Real Space

Particle in One Dimension
® Position operator x

® Momentum operator p

.d

p:_ld_x

¢ We note that the position and momentum operators do not commute

[X, p] =i

This is the canonical commutation relation, which gives us the Heisenberg
uncertainty principle
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Representing Real Space

Particle in Three Dimensions
* Position operator r = (x,y,z)"
* Momentum operator p = (px, Py, Pz)"
® We introduce the angular momentum operator L

L=rxp=rx(=iV,)

® We often work with the square magnitude of the angular momentum
L=L;+L;+L2

In spherical coordinates

1 9 0 1 92
C = o (035) o

We observe that this is independent of radial direction
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Eigenfunctions of L?

We consider the eigenproblem
L2Y (6, 0) = EY(6,¢)

We make the ansatz

Y(0,0) = ©(0), (»)

Substituting gives us

(_ﬁ% (sin(@)%) — 1(0) 882)@(9)¢(90) £0(0)d(¢)
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Eigenfunctions of L2

Separating out the ¢ variable

Where m? is an eigenvalue

This yields solutions of the form
O(p) = Ae'™ + Be '™

We find that m must be an integer
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Eigenfunctions of L?

Separating out the 6 variable

1 0 00 m?
== e =k
~sin(6) 00 ( (%) 30) * sin2(67)e ©
Where k is an eigenvalue; we find that k = I(I + 1) for | € N
Applying the change of variables { = cos(6), &(cos(6)) = ©(0) yields

d 5 dE m ],
R e

With k = I(/ + 1), this is equivalent to the general Legendre equation

ix [(1 —x2)diXP,’"(x)] + [/(/+ 1) —

m?

_xz] P(x) =0
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Eigenfunctions of L?

The solutions P/"(x) to the general Legendre equation are called the
associated Legendre polynomials
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Therefore, our solutions to the eigenproblem in 6 are of the form

O(0) = P"(cos(0))
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Eigenfunctions of L?

All eigenfunctions Y (6, ) for L? are therefore given by
Yim(0,0) = CimP™(cos(6))e'™?

Where C,,, is a normalization factor

m=—4 m= -3 m= -2 m=—1 m
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http://opticaltweezers.org/chapter-5-electromagnetic-theory/figure-5-2-spherical-harmonics/
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The Hamiltonian in Real Space

Particle in One Dimension
Potential field
2
H= % +V(x)

Kinetic energy

Particle in Three Dimensions

H= —%A, +V(r)

Where A, = 82 4 07 + 82 is the Laplacian
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Representing the Hydrogen Atom

Time-Independent Shrodinger Equation

The stationary state of the time-independent Shrodinger equation can be
found by solving the eigenproblem

(~380+ Vi) ) wte) = Evte)

The hydrogen atom is the only element on the periodic table for which the
Shrédinger equation has a closed-form solution

Electron

https://www.pinterest.com/pin/144678206755850918/
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Representing the Hydrogen Atom

We consider the nucleus to be fixed at the origin, so that

V(ir)=—=
Where r = |r|

Since representation in spherical coordinates is helpful, we express the
Laplacian accordingly

A—la 29 + = 0 sm(c9)a +—1 6—2
YT r20r 8r r2sin(9) 90 r2sin?() 0¢?
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Representing the Hydrogen Atom

We make the ansatz
Y(r,0,0) = R(r)Yim(0, )

This allows us to separate out the radial component of the eigenproblem

19 (L,0R\ I0+1), .« 1.

Where V(r) = 'UI1 _ 1

r

Applying the change of variables u(r) = rR(r)

1 6? ~
—Ewu(r) + V(r)u(r) = Eu(r)
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Representing the Hydrogen Atom

As r — oo, V(r) = 0, so the equation looks like

109?
—Ewu(r) = Eu(r)

If E >0, we have u(r) ~ cie’V?E 4 ce’V2Er which is not square
integrable
Therefore for E < 0, we can solve for the eigenvalues as

1
[ —
Mok ¥ 1)2
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