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Preliminaries

States
• The state of a quantum object is described by a state vector |ψ⟩
• The set of state vectors is the state space H, which is a vector space
isomorphic to C2

Observables
• Physical observables (position, velocity, etc.) of quantum objects

are represented by nonsingular Hermitian operators on H
• The eigenvectors of an observable are referred to as its eigenstates

Since the eigenstates of an observable span H, any state vector can be

expressed as a linear combination thereof

|ψ⟩ =
∑
i

cix
ci∈C

Eigenstate
↓

|φi ⟩
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Preliminaries

Measurement

• A measurement of an observable must interact with the quantum
state, causing it to jump to an eigenstate of the observable

Ax
Physical observable

State to which the object jumps
↓

|φi ⟩ = ai
↑

Measured value

|φi ⟩

• The state to which an object jumps upon measurement is random,
occurring with probability |ci |2
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Preliminaries

Uncertainty

• Two observables can only be measured simultaneously if they can be
diagonalized using the same eigenstates

The necessary and sufficient condition for this is that the commutator must

equal zero

[A,B] := AB− BA

Additional Notes

• The inner product between two state vectors |φ⟩, |ψ⟩ ∈ H is denoted
by ⟨φ|ψ⟩

• The physical meanings of the state vectors |ψ⟩ and c |ψ⟩ are the same
for all c ̸= 0; we may therefore assume that ⟨ψ|ψ⟩ = 1
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The Shrödinger Equation

The Shrödinger equation describes the evolution of a quantum state |ψ(t)⟩
over time

i∂t |ψ(t)⟩ = H(t)|ψ(t)⟩

Where the Hamiltonian operator H gives the total energy of the system
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The Shrödinger Equation

We consider the solution to the Shrödinger equation when the Hamiltonian
is time-independent

The Hamiltonian is diagonalized via

H|φi ⟩ = Ei |φi ⟩

Case 1

If the initial state |ψ(t0)⟩ is an eigenstate of H, then the solution to the
Shrödinger equation is

|ψ(t)⟩ = e−iEi (t−t0)|ψ(t0)⟩
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The Shrödinger Equation

Case 2

If the initial state is not an eigenstate of H, recall that we may express it
as a linear combination of the eigenstates

|ψ(t0)⟩ =
∑
i

ci |φi ⟩

This yields the solution

|ψ(t)⟩ =
∑
i

cie
−iEi (t−t0)|φi ⟩.
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Representing Real Space

Particle in One Dimension

• Hilbert space

H =

{
f

∣∣∣∣∫
R
|f (x)|2dx <∞

}
• Inner product

⟨φ|ψ⟩ =
∫
R
φ∗(x)ψ(x)dx

• Normalization condition

⟨ψ|ψ⟩ =
∫
R
|ψ(x)|2dx = 1
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Representing Real Space

Particle in One Dimension

• Position operator x

• Momentum operator p

p = −i
d

dx

• We note that the position and momentum operators do not commute

[x,p] = i

This is the canonical commutation relation, which gives us the Heisenberg

uncertainty principle
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Representing Real Space

Particle in Three Dimensions

• Position operator r = (x, y, z)T

• Momentum operator p = (px ,py ,pz)T

• We introduce the angular momentum operator L

L = r × p = r × (−i∇r)

• We often work with the square magnitude of the angular momentum
L2 = L2x + L2y + L2z

In spherical coordinates

L2 = − 1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
− 1

sin2(θ)

∂2

∂φ2

We observe that this is independent of radial direction
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Eigenfunctions of L2

We consider the eigenproblem

L2Y (θ, φ) = EY (θ, φ)

We make the ansatz

Y (θ, φ) = Θ(θ),Φ(φ)

Substituting gives us(
− 1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
− 1

sin2(θ)

∂2

∂φ2

)
Θ(θ)Φ(φ) = EΘ(θ)Φ(φ)
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Eigenfunctions of L2

Separating out the φ variable

−∂
2Φ

∂φ2
= m2Φ

Where m2 is an eigenvalue

This yields solutions of the form

Φ(φ) = Ae imφ + Be−imφ

We find that m must be an integer
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Eigenfunctions of L2

Separating out the θ variable

− 1

sin(θ)

∂

∂θ

(
sin(θ)

∂Θ

∂θ

)
+

m2

sin2(θ)
Θ = kΘ

Where k is an eigenvalue; we find that k = l(l + 1) for l ∈ N

Applying the change of variables ζ = cos(θ), ξ(cos(θ)) = Θ(θ) yields

d

dζ

[
(1− ζ2)

dξ

dζ

]
+

[
k − m2

1− ζ2

]
ξ = 0

With k = l(l + 1), this is equivalent to the general Legendre equation

d

dx

[
(1− x2)

d

dx
Pm
l (x)

]
+

[
l(l + 1)− m2

1− x2

]
Pm
l (x) = 0
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Eigenfunctions of L2

The solutions Pm
l (x) to the general Legendre equation are called the

associated Legendre polynomials

https://en.wikipedia.org/wiki/Associated_Legendre_polynomials#/media/File:Mplwp_legendreP15a1.svg

Therefore, our solutions to the eigenproblem in θ are of the form

Θ(θ) = Pm
l (cos(θ))
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Eigenfunctions of L2

All eigenfunctions Y (θ, φ) for L2 are therefore given by

Ylm(θ, φ) = ClmP
m
l (cos(θ))e imφ

Where Clm is a normalization factor

http://opticaltweezers.org/chapter-5-electromagnetic-theory/figure-5-2-spherical-harmonics/
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The Hamiltonian in Real Space

Particle in One Dimension

H =
p2

2
↑

Kinetic energy

+

Potential fieldy
V (x)

Particle in Three Dimensions

H = −1

2
∆r + V (r)

Where ∆r = ∂2x + ∂2y + ∂2z is the Laplacian
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Representing the Hydrogen Atom

Time-Independent Shrödinger Equation

The stationary state of the time-independent Shrödinger equation can be
found by solving the eigenproblem(

−1

2
∆r + V (r)

)
ψ(r) = Eψ(r)

The hydrogen atom is the only element on the periodic table for which the

Shrödinger equation has a closed-form solution

https://www.pinterest.com/pin/144678206755850918/
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Representing the Hydrogen Atom

We consider the nucleus to be fixed at the origin, so that

V (r) = −1

r

Where r = |r|

Since representation in spherical coordinates is helpful, we express the
Laplacian accordingly

∆r =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

r2
L2
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Representing the Hydrogen Atom

We make the ansatz

ψ(r , θ, φ) = R(r)Ylm(θ, φ)

This allows us to separate out the radial component of the eigenproblem

− 1

2r2
∂

∂r

(
r2
∂R

∂r

)
+

l(l + 1)

2r2
R(r)− 1

r
R(r) = ER(r)

Where Ṽ (r) = l(l+1)
2r2 − 1

r

Applying the change of variables u(r) = rR(r)

−1

2

∂2

∂r2
u(r) + Ṽ (r)u(r) = Eu(r)
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Representing the Hydrogen Atom

As r → ∞, Ṽ (r) → 0, so the equation looks like

−1

2

∂2

∂r2
u(r) = Eu(r)

If E > 0, we have u(r) ∼ c1e
i
√
2Er + c2e

i
√
2Er , which is not square

integrable

Therefore for E < 0, we can solve for the eigenvalues as

Ekl = − 1

2(k + l)2
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